RESUMO
Whether maternal exposure to dust-sourced particulate matter (hereafter, dust PM2.5) is associated with stillbirth remains unknown. We adopted a sibling-matched case-control design to analyze 9332 stillbirths and 17,421 live births. We associated the risk of stillbirth simultaneously with dust and nondust components of PM2.5 and developed a nonlinear joint exposure-response function. Next, we estimated the burden of stillbirths attributable to the PM2.5 mixture. The concentration index was used to evaluate whether the burden of PM2.5-related stillbirths was disproportionally distributed among pregnancies exposed to dust-rich particles. Each 10 µg/m3 increase in dust PM2.5 was associated with a 14.5% (95% confidence interval: 5.5, 24.2%) increase in the odds of stillbirth. Based on the risk assessment across 137 countries, sand dust contributed to about 15% of the PM2.5 exposure but to about 45% of the PM2.5-related stillbirths during 2003-2019. In 2015, 30% of the PM2.5-related stillbirths were concentrated within 15% of pregnancies exposed to the dust-richest PM2.5. The index increased in subregions, such as South Asia, suggesting the growth of health inequality due to exposure to dust PM2.5. Based on our findings, land management, such as halting desertification, will help prevent stillbirths and reduce global maternal health inequality.
Assuntos
Poeira , Material Particulado , Natimorto , Natimorto/epidemiologia , Humanos , Feminino , Gravidez , Poluentes Atmosféricos , Areia , Exposição Materna , Poluição do Ar , Países em Desenvolvimento , Estudos de Casos e ControlesRESUMO
Addressing environmental factors has recently been recommended to curb the growing trend of anemia in low- and middle-income countries (LMICs). Fine particulate matter (PM2.5) generated by dust storms were concentrated in place with a high prevalence of anemia. In a multicounty, multicenter study, we analyzed the association between anemia and life-course averaged exposure to dust PM2.5 among children aged <5 years based on 0.65 million records from 47 LMICs. In the fully adjusted mixed effects model, each 10 µg/m3 increase in life-course averaged exposure to dust PM2.5 was associated with a 9.3% increase in the odds of anemia. The estimated exposure-response association was nonlinear, with a greater effect of dust PM2.5 exposure seen at low concentrations. Applying this association, we found that, in 2017, among all children aged <5 years in the 125 LMICs, dust PM2.5 contributed to 37.98 million cases of anemia. Results indicated that dust PM2.5 contributed a heavier burden than all of the well-identified risk factors did, except for iron deficiency. Our study revealed that long-term exposure to dust PM2.5 can be a novel risk factor, pronouncedly contributed to the burden of child anemia in LMICs, affected by land degradations or arid climate.
Assuntos
Anemia , Poeira , Material Particulado , Humanos , Anemia/epidemiologia , Pré-Escolar , Feminino , Masculino , Países em Desenvolvimento , Exposição Ambiental , Lactente , Fatores de RiscoRESUMO
Nitrogen dioxide (NO2) is associated with mortality and many other adverse health outcomes. In 2021, the World Health Organization established a new NO2 air quality guideline (AQG) (annual average <10 µg/m3). However, the burden of diseases attributable to long-term NO2 exposure above the AQG is unknown in China. Nitrogen oxide is a major air pollutant in populous cities, which are disproportionately impacted by NO2; this represents a form of environmental inequality. We conducted a nationwide risk assessment of premature deaths attributable to long-term NO2 exposure from 2013 to 2020 based on the exposure-response relationship, high-resolution annual NO2 concentrations, and gridded population data (considering sex, age, and residence [urban vs rural]). We calculated health metrics including attributable deaths, years of life lost (YLL), and loss of life expectancy (LLE). Inequality in the distribution of attributable deaths and YLLs was evaluated by the Lorenz curve and Gini index. According to the health impact assessments, in 2013, long-term NO2 exposure contributed to 315,847 (95% confidence interval [CI]: 306,709-319,269) premature deaths, 7.90 (7.68-7.99) million YLLs, and an LLE of 0.51 (0.50-0.52) years. The high-risk subgroup (top 20%) accounted for 85.7% of all NO2-related deaths and 85.2% of YLLs, resulting in Gini index values of 0.81 and 0.67, respectively. From 2013 to 2020, the estimated health impact from NO2 exposure was significantly reduced, but inequality displayed a slightly increasing trend. Our study revealed a considerable burden of NO2-related deaths in China, which were disproportionally frequent in a small high-risk subgroup. Future clean air initiatives should focus not only on reducing the average level of NO2 exposure but also minimizing inequality.
Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Disparidades nos Níveis de Saúde , Dióxido de Nitrogênio , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , População do Leste Asiático , Exposição Ambiental/análise , Óxido Nítrico , Dióxido de Nitrogênio/análise , Material Particulado/análiseRESUMO
BACKGROUNDS: The vulnerability of fetuses differs at different developmental stages, in response to environmental stressors such as fine particulate matter (PM2.5), a ubiquitous air pollutant. Whether gestational age (GA) modifies the association between prenatal fine particulate matter (PM2.5) exposure and fetal death remains unclear. METHODS: We selected approximately 47.8 million eligible United States (US) livebirth and fetal death (defined as a termination at a GA of 20-43 weeks) records from 1989 to 2004. For each record, we took the level of prenatal exposure to PM2.5 as the average concentration in the mother's residential county during the entire gestational period, or a specific trimester (i.e., GA-specific exposure), according to well-established estimates of monthly levels across the contiguous US. First, we evaluated the associations between PM2.5 exposure and fetal death at a specific GA (i.e., GA-specific outcome) using five different logit models (unadjusted, covariate-adjusted, propensity-score, double robust, and diagnostic-score models). Double robust model was selected as the main model due to its advantages in causal inference. Then, we conducted meta-analyses to pool the estimated GA-specific associations, and explored how the pooled estimates varied with GA. RESULTS: According to the meta-analysis, all models suggested gestational PM2.5 exposure was associated with fetal death. However, there was slight heterogeneity in the estimated effects, as different models revealed a range of 3.6-10.7% increase in the odds of fetal death per 5-µg/m3 increment of PM2.5. Each 5-µg/m3 increase in PM2.5 exposure during the entire gestation period significantly increased the odds of fetal death, by 8.1% (95% confidence interval [CI]: 5.1-11.2%). In terms of GA-specific outcomes, the odds of fetal death at a GA of 20-27, 28-36, or ≥ 37 weeks increased by 11.0% (5.9-16.4%), 5.2% (0.4-10.1%), and 8.3% (2.5-14.5%), respectively. In terms of GA-specific exposure, the odds of fetal death increased by 6.0% (3.9-8.2%), 4.1% (3.9-8.2%), and 4.3% (0.5-8.2%) with 5-µg/m3 increases in PM2.5 exposure during the first, second, and third trimester, respectively. The association had the largest effect size (odds ratio = 1.098, 95% CI: 1.061-1.137) between PM2.5 exposure during early gestation (i.e., first trimester) and early fetal death (i.e., 20-27 weeks). CONCLUSIONS: Prenatal exposure to PM2.5 was significantly associated with an increased risk of fetal death. The association was varied by gestational-age-specific exposures or outcomes, suggesting gestation age as a potential modifier on the effect of PM2.5. The fetus was most vulnerable during the early stage of development to death associated with PM2.5 exposure.
Assuntos
Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Idade Gestacional , Estudos Epidemiológicos , Material Particulado/efeitos adversos , Morte FetalRESUMO
BACKGROUND: Low birthweight attributable to fine particulate matter (PM2.5) exposure is a global issue affecting infant health, especially in low- and middle-income countries (LMICs). However, large-population studies of multiple LMICs are lacking, and little is known about whether the source of PM2.5 is a determinant of the toxic effect on birthweight. OBJECTIVE: We examined the effect on birthweight of long-term exposure to PM2.5 from different sources in LMICs. METHODS: The birthweights of 53,449 infants born between September 16, 2017 and September 15, 2018 in 17 LMICs were collected from demographic and health surveys. Long-term exposure to PM2.5 in 2017 produced by 20 different sources was estimated by combining chemical transport model simulations with satellite-based concentrations of total mass. Generalized linear regression models were used to investigate the associations between birthweight and each source-specific PM2.5 exposure. A multiple-pollutant model with a ridge penalty on the coefficients of all 20-source-specific components was employed to develop a joint exposure-response function (JERF) of the PM2.5 mixtures. The estimated JERF was then used to quantify the global burden of birthweight reduction attributable to PM2.5 mixtures and to PM2.5 from specific sources. RESULTS: The fully adjusted single-pollutant model indicated that exposure to a 10 µg/m3 increase in total PM2.5 was significantly associated with a -6.6 g (95% CI -11.0 to -2.3) reduction in birthweight. In single- and multiple-pollutant models, significant birthweight changes were associated with exposure to PM2.5 produced by international shipping (SHP), solvents (SLV), agricultural waste burning (GFEDagburn), road transportation (ROAD), waste handling and disposal (WST), and windblown dust (WDUST). Based on the global average exposure to PM2.5 mixtures, the JERF showed that the overall change in birthweight could mostly be attributed to PM2.5 produced by ROAD (-37.7 g [95% CI -49.2 to -24.4] for a global average exposure of 2.2 µg/m3), followed by WST (-27.5 g [95% CI -42.6 to -10.7] for a 1.6-µg/m3 exposure), WDUST (-19.5 g [95% CI -26.7 to -12.6] for a 8.6-µg/m3 exposure), and SHP (-19.0 g [95% CI -32.3 to -5.7] for a 0.2-µg/m3 exposure), which, with the exception of WDUST, are anthropogenic sources. The changes in birthweight varied geographically and were co-determined by the concentration as well as the source profile of the PM2.5 mixture. CONCLUSION: PM2.5 exposure is associated with a reduction in birthweight, but our study shows that the magnitude of the association differs depending on the PM2.5 source. A source-targeted emission-control strategy that considers local features is therefore critical to maximize the health benefits of air quality improvement, especially with respect to promoting maternal and child health.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Peso ao Nascer , Poluentes Atmosféricos/análise , Estudos Transversais , Países em Desenvolvimento , Poluição do Ar/análise , Material Particulado/toxicidade , Poeira , Exposição AmbientalRESUMO
BACKGROUND: Because of the large change in iodine nutrition and other lifestyle in China, there is concern that thyroid nodules (TNs) may become epidemic. However, few data are currently available on the national prevalence of TNs. In addition, whether excess iodine in drinking water is associated with an increased risk of TNs, following universal salt iodization, has been less studied. We aim to estimate a national prevalence of TNs and its association with drinking water iodine. METHODS: We conducted a national survey of 9,381,032 adults, aged 18 years or older, from 30 provinces and municipalities in China, who underwent a thyroid ultrasound test from January 2018 to December 2018. Crude and standardized prevalence of TNs were estimated. We further evaluated the ecological association between province- or city-specific iodine levels in drinking water and the prevalence of TNs using linear regression. RESULTS: The age-standardized prevalence of TNs in men, women, and both sexes were 29.8%, 44.7%, and 37.1%, respectively. The prevalence increased with age from 22.7% (18-30 years) to 71.5% (≥70 years), and body mass index from 26.1% (<18.5 kg/m2) to 40.8% (≥28 kg/m2). Participants living in the eastern, northern, and northeastern regions had a higher prevalence of TNs (ranged from 38.7% to 43.7%) than those in other regions (ranged from 30.1% to 35.5%). The coastal residents (40.1%) had a higher prevalence of TNs than those in inlanders (35.4%). Higher levels of iodine in drinking water were linearly associated with increased prevalence of TNs, with Pearson correlation coefficients of 0.47 (P < 0.01) in men, 0.40 (P = 0.03) in women, and 0.46 (P = 0.01) in overall participants. CONCLUSION: This was a nationwide prevalence study of TNs in China, showing that TNs were common health problems, and increased concentration of iodine in drinking water was associated with a higher prevalence of TNs.
Assuntos
Água Potável , Iodo , Nódulo da Glândula Tireoide , Adulto , China/epidemiologia , Feminino , Humanos , Masculino , Prevalência , Nódulo da Glândula Tireoide/epidemiologiaRESUMO
BACKGROUND AND AIMS: Diet can affect cardiovascular health by changing lipid profiles or obesity levels. However, the association of dietary patterns reflecting lipid metabolism and adiposity measures with cardiovascular disease (CVD) is unclear. This study aimed to derive dietary patterns that explained variation in blood lipids and adiposity and investigate their associations with prevalent CVD. METHODS AND RESULTS: A cross-sectional study was constructed in Beijing MJ Health Screening Center from 2008 to 2018. A dietary pattern was derived using reduced-rank regression among 75,159 participants without CVD. The dietary pattern explained the largest in predicting lipid profiles and adiposity measures. The dietary pattern was associated with a higher level of LDL-cholesterol and triglyceride, and high body mass index and waist circumference, but lower HDL-cholesterol. The dietary pattern was characterized by high intakes of staple food, red meat, processed food, fried food, edible offal, and less intakes of jam or honey, fruits, milk, and dairy products. Among 89,633 participants, we evaluated its association with prevalent CVD using multivariate logistic regression with adjustment for age, sex, annual income, education attainment, marital status, family history of CVD, smoking status, alcohol use, physical activity, and daily energy intake. Individuals with the highest quintile of dietary pattern score were 1%-38% more likely to have prevalent CVD than the lowest quintile (OR = 1.18, 95% CI = 1.01-1.38). CONCLUSION: A diet pattern reflecting lipid profiles and obesity level was positively related to prevalent CVD, which could provide new insights in optimizing blood lipids and body shape for the prevention of CVD through dietary approaches among the Chinese population.
Assuntos
Doenças Cardiovasculares , Índice de Massa Corporal , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Estudos Transversais , Dieta/efeitos adversos , Comportamento Alimentar , Humanos , Fatores de RiscoRESUMO
BACKGROUND: Exposure to landscape fire smoke (LFS) is linked to child mortality and birthweight. It is unknown whether gestational exposure to LFS affects child survival rate. We aimed to link under-five death (U5D) to gestational LFS exposure by performing a causal mediation analysis based on birthweight. METHOD: We conducted a sibling-matched case-control study of children under 5 years of age who were affiliated with the same mothers from Demographic and Health Surveys in 54 low- and middle-income countries, during the period from 2000 to 2014. LFS exposure was quantified as the surface concentration of fine particulate matter (PM2.5) attributable to landscape fires, estimated using a global atmospheric model. Three pairwise associations between fire-sourced PM2.5, birthweight, and U5D were assessed using fixed-effects regressions. We used a bootstrap-based mediation test of regression coefficients to examine whether the LFS-birthweight-U5D pathway was statistically significant. We also conducted three pairwise exposure-response functions using nonlinear models and used them to estimate the pathway-specific disease burden from 2000 to 2014. RESULTS: After adjustments for multiple confounders, each 1-µg/m3 increase in gestational exposure to fire-sourced PM2.5 was associated with a reduction of 2.179 (95% confidence interval [CI]: -3.777, -0.580) g in birthweight. Each 1-g birthweight reduction was associated with a 0.072% (95% CI: 0.065%, 0.078%) increase in U5D. Furthermore, each increase in exposure to fire-sourced PM2.5 was associated with a 2.853% (95% CI: 0.835%, 4.911%) increase in U5D; 7.294% (95% CI: 0.710%, 24.254%) of the linkage was explained by LFS-attributable birthweight reduction. Based on the estimated exposure-response functions, from 2000 to 2014, global exposure to fire-sourced PM2.5 contributed a mean birthweight reduction of 10.30 (95% CI: 2.93, 19.47) g, contributing to 60,350 (18,111, 106,619) premature U5Ds annually. CONCLUSION: In low- and middle-income countries, gestational exposure to LFS can increase mortality during infancy; appropriate interventions are needed to promote health in childhood.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Peso ao Nascer , Estudos de Casos e Controles , Criança , Pré-Escolar , Países em Desenvolvimento , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Promoção da Saúde , Humanos , Análise de Mediação , Material Particulado/análise , Medição de RiscoRESUMO
INTRODUCTION: Exposure to greenspace has been reported to reduce stroke mortality, but there is a lack of evidence regarding poststroke disability. This study aimed to investigate the association between long-term greenspace exposure and the risk of poststroke disability. METHODS: Based on the China National Stroke Screening Survey from 2013 to 2019, a total of 65,892 visits from 28,085 stroke survivors with ≥ 2 visits were included in this longitudinal study. Long-term greenspace exposure was assessed by a 3-year average of the Normalized Difference Vegetation Index (NDVI) and the proportion of green land cover according to participants' residential communities. Poststroke functional status was assessed with the modified Ranking Score (mRS) at each visit; a cutoff score > 2 indicated disability. Fixed effects regressions were used to examine the association of greenspace exposure with continuous mRS scores or binary indicators for disability. RESULTS: The annual mean NDVI value was 0.369 (standard deviation = 0.120) for all visits among stroke survivors. With full adjustments, each 0.05 increase in NDVI was associated with a 0.056-unit (95 % confidence interval (CI): 0.034, 0.079) decrease in the mRS score and a 46.6 % (95 % CI: 10.0 %, 68.3 %) lower risk of poststroke disability. An L-shaped curve was observed for the nonlinear associations between NDVI and mRS score or disability. Additionally, each 1 % increase in grasslands, savannas, forest, and croplands was associated with 0.008- (95 % CI: 0.002, 0.014), 0.003- (95 % CI: 0.001, 0.005), 0.001- (95 % CI: -0.015, 0.018), and 0.002-unit (95 % CI: -0.003, 0.007) decreases in the mRS score, respectively. CONCLUSIONS: Increasing greenspace was inversely associated with mRS score. Greenspace planning can be a potential intervention to prevent poststroke disability.
Assuntos
Parques Recreativos , Acidente Vascular Cerebral , Humanos , Estudos Longitudinais , Acidente Vascular Cerebral/epidemiologia , China/epidemiologiaRESUMO
BACKGROUND: Associations between the periconceptional folic acid only (FAO) or multiple micronutrients containing folic acid (MMFA) supplementation and risk for limb defects are inconsistent. OBJECTIVE: To explore the association between periconceptional folic acid supplements use and risk for limb defects, including clubfoot, polydactyly, syndactyly, and limb deficiencies. METHODS: Data were derived from a cohort based on a pregnancy registry in a district of Beijing, China, from 2013 to 2018. Information on maternal periconceptional FAO and MMFA supplementation was collected via face-to-face interviews at first trimester. Pregnancy outcomes including limb defects were ascertained in livebirths, stillbirths, and elective pregnancy terminations and were recorded into the system. Propensity score methods were used to adjust for potential confounders. RESULTS: A total of 63 969 women with a singleton delivery were included. The overall prevalence of limb defects was 47.5 per 10 000 (n = 63 969) singleton deliveries. Decreased prevalence of limb defects was found among FAO/MMFA users compared with women who did not take supplements (nonusers) (46.1 vs. 61.9 per 10 000 births, adjusted risk ratio [RR] 0.80, 95% confidence interval [CI] 0.56, 1.12). Compared with nonusers (n = 6462, 10.2%), women who took either FAO (n = 26 567, 42.0%) or MMFA (n = 30 259, 47.8%) had a lower risk for total clubfoot (RR 0.40, 95% CI 0.20, 0.84), and for isolated clubfoot (RR 0.41, 95% CI 0.17, 0.97). For other limb defects except clubfoot, FAO supplementation did not appear to be associated with reduced risk, while MMFA supplementation group had 30%-50% reduced risks for other limb defects. A lower risk for limb defects or isolated limb defects was found with MMFA supplementation when FAO supplementation was used as a control. CONCLUSIONS: Maternal periconceptional supplements with either FAO or MMFA had inverse association with clubfoot in offspring, and MMFA was associated with lower risk for isolated limb defects compared with FAO.
Assuntos
Ácido Fólico , Deformidades Congênitas dos Membros , Suplementos Nutricionais , Feminino , Feto , Humanos , Deformidades Congênitas dos Membros/epidemiologia , Deformidades Congênitas dos Membros/prevenção & controle , Gravidez , Resultado da GravidezRESUMO
OBJECTIVE: The association between gestational weight gain (GWG) and exclusive breast-feeding (EBF) practices remains unclear. The present study evaluated the association between GWG and EBF in the first 6 months postpartum among primiparas in rural China. DESIGN: The study population was drawn from a previous randomized controlled trial, and the relevant data were obtained from an electronic, population-based perinatal system and a monitoring system for child health care. GWG was categorized according to the guidelines of the Institute of Medicine. SETTING: Five rural counties in Hebei Province, China.ParticipantsA total of 8449 primiparas. RESULTS: Of the women, 58·7 % breast-fed exclusively for the first 6 months postpartum. Overweight women who gained either more or less weight than the recommended GWG tended to experience failure of EBF (OR=0·49; 95 % CI 0·34, 0·70; P<0·001 and OR=0·79; 95 % CI 0·63, 0·99; P=0·048, respectively). The same results were also observed among obese women; the OR for lower and greater weight gain were 0·28 (95 % CI 0·08, 0·94; P=0·04) and 0·55 (95 % CI 0·32, 0·95; P=0·03), respectively. CONCLUSIONS: GWG that is below or above the Institute of Medicine recommendations is associated with EBF behaviour for the first 6 months postpartum in overweight and obese primiparas in rural China.
Assuntos
Aleitamento Materno/estatística & dados numéricos , Ganho de Peso na Gestação/fisiologia , Período Pós-Parto/fisiologia , Adulto , Índice de Massa Corporal , China , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto JovemRESUMO
In the southwestern United States, the frequency of summer wildfires has elevated ambient PM2.5 concentrations and rates of adverse birth outcomes. Notably, hypertensive disorders in pregnancy (HDP) constitute a significant determinant associated with maternal mortality and adverse birth outcomes. Despite the accumulating body of evidence, scant research has delved into the correlation between chemical components of wildfire PM2.5 and the risk of HDP. Derived from data provided by the National Center for Health Statistics, singleton births from >2.68 million pregnant women were selected across 8 states (Arizona, AZ; California, CA, Idaho, ID, Montana, MT; Nevada, NV; Oregon, OR; Utah, UT, and Wyoming, WY) in the southwestern US from 2001 to 2004. A spatiotemporal model and a Goddard Earth Observing System chemical transport model were employed to forecast daily concentrations of total and wildfire PM2.5-derived exposure. Various modeling techniques including unadjusted analyses, covariate-adjusted models, propensity-score matching, and double robust typical logit models were applied to assess the relationship between wildfire PM2.5 exposure and gestational hypertension and eclampsia. Exposure to fire PM2.5, fire-sourced black carbon (BC) and organic carbon (OC) were associated with an augmented risk of gestational hypertension (ORPM2.5 = 1.125, 95 % CI: 1.109,1.141; ORBC = 1.247, 95 % CI: 1.214,1.281; OROC = 1.153, 95 % CI: 1.132, 1.174) and eclampsia (ORPM2.5 = 1.217, 95 % CI: 1.145,1.293; ORBC = 1.458, 95 % CI: 1.291,1.646; OROC = 1.309, 95 % CI: 1.208,1.418) during the pregnancy exposure window with the strongest effect. The associations were stronger that the observed effects of ambient PM2.5 in which the sources primarily came from urban emissions. Social vulnerability index (SVI), education years, pre-pregnancy diabetes, and hypertension acted as effect modifiers. Gestational exposure to wildfire PM2.5 and specific chemical components (BC and OC) increased gestational hypertension and eclampsia risk in the southwestern United States.
Assuntos
Poluentes Atmosféricos , Eclampsia , Hipertensão Induzida pela Gravidez , Material Particulado , Incêndios Florestais , Feminino , Gravidez , Humanos , Hipertensão Induzida pela Gravidez/epidemiologia , Material Particulado/análise , Poluentes Atmosféricos/análise , Sudoeste dos Estados Unidos/epidemiologia , Eclampsia/epidemiologia , Poluição do Ar/estatística & dados numéricos , Exposição Materna/estatística & dados numéricos , AdultoRESUMO
BACKGROUND: Flooding has become more frequent and intensive due to climate change, particularly in Asian countries. However, evidence on the long-term health effects of floods from large-scale studies on the vulnerable aged population in China is insufficient. This study analyzed the long-term effects of exposure to flood on electrocardiographic (ECG) abnormalities, a commonly used indicator of cardiovascular disease (CVD) screening, in middle-aged and elderly people. METHOD: We evaluated the Chinese National Stroke Screening Survey data of 80,711 follow-up records from 38,375 participants aged > 40 years with two or more visits between 2013 and 2018 in this longitudinal study. Flood exposure was assessed as the presence of a satellite-detected flooded area within 500 m of the residence within 5 years before the survey date. The association between ECG abnormalities and flood exposure was analyzed using a random effects model with multiple adjustments. As age is an important CVD risk factor, a varying-coefficient function was derived to estimate the nonlinear modifying effect of age on the association between ECG abnormalities and flood exposure. The strata-specific associations between ECG abnormalities and flood exposure were applied to characterize vulnerability to flood. RESULTS: The fully adjusted model suggested that flood exposure was associated with an increased risk for ECG abnormalities among the middle-aged and elderly population (odds ratio [OR] 1.74, 95 % confidence interval [CI] 1.49, 2.03). The ORs of flood exposure for ECG suggesting atrial fibrillation, ST depression, and left ventricular hypertrophy were 1.85 (95 % CI 1.16, 2.94), 6.92 (95 % CI 5.23, 9.16), and 1.55 (95 % CI 0.66, 3.65), respectively. These associations were generally robust in various subpopulations, while a sublinear curve for the negative modifying effect of age was observed on the population vulnerability to flood. CONCLUSION: Flood exposure was associated with an increased long-term risk for an ECG abnormality. The need for effective measures to mitigate vulnerability to flood is not negligible in China.
Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Pessoa de Meia-Idade , Humanos , Idoso , Inundações , Estudos Longitudinais , Fibrilação Atrial/epidemiologia , China/epidemiologiaRESUMO
BACKGROUND: Exposure to ambient fine particulate matter (PM2.5) has been associated with reduced human fecundity. However, the attributable burden has not been estimated for low- and middle-income countries (LMICs), where the exposure-response function between PM2.5 and the infertility rate has been insufficiently studied. OBJECTIVE: This study examined the associations between long-term exposure to PM2.5 and human fecundity indicators, namely the expected time to pregnancy (TTP) and 12-month infertility rate (IR), and then estimated PM2.5-attributable burden of infertility in LMICs. METHODS: We analyzed 164,593 eligible women from 100 Demographic and Health Surveys conducted in 49 LMICs between 1999 and 2021. We assessed PM2.5 exposures during the 12 months before a pregnancy attempt using the global satellite-derived PM2.5 estimates produced by Atmospheric Composition Analysis Group (ACAG). First, we created a series of pseudo-populations with balanced covariates, given different levels of PM2.5 exposure, using a matching approach based on the generalized propensity score. For each pseudo-population, we used 2-stage generalized Gamma models to derive TTP or IR from the probability distribution of the questionnaire-based duration time for the pregnancy attempt before the interview. Second, we used spline regressions to generate nonlinear PM2.5 exposure-response functions for each of the two fecundity indicators. Finally, we applied the exposure-response functions to estimate number of infertile couples attributable to PM2.5 exposure in 118 LMICs. RESULTS: Based on the Gamma models, each 10 µg/m3 increment in PM2.5 exposure was associated with a TTP increase by 1.7 % (95 % confidence interval [CI]: -2.3 %-6.0 %) and an IR increase by 2.3 % (95 %CI: 0.6 %-3.9 %). The nonlinear exposure-response function suggested a robust effect of an increased IR for high-concentration PM2.5 exposure (>75 µg/m3). Based on the PM2.5-IR function, across the 118 LMICs, the number of infertile couples attributable to PM2.5 exposure exceeding 35 µg/m3 (the first-stage interim target recommended by the World Health Organization global air quality guidelines) was 0.66 million (95 %CI: 0.061-1.43), accounting for 2.25 % (95 %CI: 0.20 %-4.84 %) of all couples affected by infertility. Among the 0.66 million, 66.5 % were within the top 10 % high-exposure infertile couples, mainly from South Asia, East Asia, and West Africa. CONCLUSION: PM2.5 contributes significantly to human infertility in places with high levels of air pollution. PM2.5-pollution control is imperative to protect human fecundity in LMICs.
Assuntos
Poluentes Atmosféricos , Países em Desenvolvimento , Exposição Ambiental , Fertilidade , Material Particulado , Humanos , Material Particulado/análise , Material Particulado/efeitos adversos , Feminino , Adulto , Fertilidade/efeitos dos fármacos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Gravidez , Poluição do Ar/efeitos adversos , Adulto Jovem , Infertilidade/induzido quimicamenteRESUMO
Clean air actions (CAAs) in China have been linked to considerable benefits in public health. However, whether the beneficial effects of CAAs are equally distributed geographically is unknown. Using high-resolution maps of the distributions of major air pollutants (fine particulate matter [PM2.5] and ozone [O3]) and population, we aimed to track spatiotemporal changes in health impacts from, and geographic inequality embedded in, the reduced exposures to PM2.5 and O3 from 2013 to 2020. We used a method established by the Global Burden of Diseases Study. By analyzing the changes in loss of life expectancy (LLE) attributable to PM2.5 and O3, we calculated the gain of life expectancy (GLE) to quantify the health benefits of the air-quality improvement. Finally, we assessed the geographic inequality embedded in the GLE using the Gini index (GI). Based on risk assessments of PM2.5 and O3, during the first stage of CAAs (2013 to 2017), the mean GLE was 1.87 months. Half of the sum of the GLE was disproportionally distributed in about one quarter of the population exposed (GI 0.44). During the second stage of CAAs (2017 to 2020), the mean GLE increased to 3.94 months and geographic inequality decreased (GI 0.18). According to our assessments, CAAs were enhanced, from the first to second stages, in terms of not only preventing premature mortality but also ameliorating health inequalities. The enhancements were related to increased sensitivity to the health effects of air pollution and synergic control of PM2.5 and O3 levels. Our findings will contribute to optimizing future CAAs.
RESUMO
BACKGROUND: Pregnancy loss, a major health issue that affects human sustainability, has been linked to short-term exposure to ground-surface ozone (O3). However, the association is inconsistent, possibly because of the co-occurrence of O3 and heat episodes, as increased temperature is a risk factor for pregnancy loss. To explain this inconsistency, the effect of O3 on pregnancy loss needs to be examined jointly with that of high temperature. METHODS: A total of 247,305 pregnancy losses during the warm season were extracted from fetal death certificates from the 386 counties in contiguous United States from 1989 to 2005. We assessed environmental exposure based on the daily maximum 8 h average of O3 from Air Quality System monitors and the 24 h average temperature from the North American Regional Reanalysis product. We conducted a bidirectional, time-stratified case-crossover study of the association between pregnancy loss and exposures to O3 and temperature and their multiplicative interaction. The main time window for the exposure assessment was the day of case occurrence and the preceding 3 days. To estimate the association, we used conditional logistic regression with adjustment for relative humidity, height of the planetary boundary layer, and holidays. Sensitivity analyses were performed on the lagged structure, nonlinearity, and between-subpopulation heterogeneity of the estimated joint effect. RESULTS: The joint effect was first estimated by the regression against categorical exposure by tertile. Compared to the low-low exposure group (O3 ≤ 78 µg/m3 and temperature ≤ 18 °C), the odds of pregnancy loss was significantly higher by 6.0 % (95 % confidence interval [CI] 2.4-9.7 %), 9.8 % (6.1-13.8 %), and 7.5 % (4.7-10.3 %) in the high-low (>104 µg/m3 and ≤18 °C), low-high (≤78 µg/m3 and >23 °C), and high-high (>104 µg/m3 and >23 °C) groups. The model of linear exposure and the multiplicative interaction yielded similar results. Each increment of 10 µg/m3 in O3 and 1 °C in temperature was associated with a 3.0 % (2.0 %-4.0 %) and 3.9 % (3.5 %-4.3 %), respectively, increase in the odds of pregnancy loss. A decrease in odds of 0.2 % (0.1 %-0.2 %) was associated with the temperature × O3 interaction. The finding of an antagonistic interaction between temperature and O3 was confirmed by models parametrizing the joint exposure as alternative nonlinear terms (i.e., a two-dimensional spline term or a varying-coefficient term) and was robust to a variety of exposure lags and stratifications. Therefore, the marginal effect of O3 was estimated to vary by climate zone. A significant association between O3 and pregnancy loss was observed in the northern, but not southern, United States. CONCLUSION: Joint exposure to O3 and high temperature can increase the risk for pregnancy loss. The adverse effect of O3 is potentially modified by ambient temperature. In high-latitude cities, controlling for O3 pollution could protect maternal health.
Assuntos
Aborto Espontâneo , Poluentes Atmosféricos , Poluição do Ar , Ozônio , Gravidez , Feminino , Humanos , Estados Unidos/epidemiologia , Ozônio/análise , Poluentes Atmosféricos/análise , Temperatura , Estudos Cross-Over , Poluição do Ar/análise , Exposição Ambiental/análise , Aborto Espontâneo/epidemiologia , Estudos Epidemiológicos , Material Particulado/análiseRESUMO
OBJECTIVE: We investigated associations between source-specific fine particulate matter (PM2.5) exposure and hemoglobin levels among children in low- and middle-income countries (LMICs). METHOD: 36,675 children aged < 5 years were collected in 11 LMICs during 2017. We associated child hemoglobin with 20 source-specific PM2.5, and calculated changes in hemoglobin that could be attributed to different PM2.5-mixture scenarios, established using real-world data from 88 Asian and African LMICs (AA-LMICs). RESULTS: Multiple-source analysis revealed PM2.5 produced by solvents (change in hemoglobin for 1-µg/m3 increment in PM2.5: -10.34 g/L, 95% CI -14.88 to -5.91), industrial coal combustion (-0.51 g/L, 95% CI -9.25 to -0.08), road transportation (-0.50 g/L, 95% CI -6.96 to -0.29), or waste handling and disposal (-0.34 g/L, 95% CI -4.38 to -0.23) was significantly associated with a decrease in hemoglobin level. Decreases in hemoglobin attributable to the PM2.5 mixtures were co-determined by the concentrations and their source profiles. The largest PM2.5-related change in hemoglobin was -10.25 g/L (95% CI -15.54 to -5.27) for a mean exposure of 61.01 µg/m3 in India. CONCLUSION: Association between PM2.5 and a decrease in hemoglobin was affected by variations in PM2.5 source profiles. Source-oriented interventions are warranted to protect children in LMICs from air pollution.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Criança , Poluentes Atmosféricos/análise , Países em Desenvolvimento , Poluição do Ar/análise , Material Particulado/análise , Índia , Exposição Ambiental/análiseRESUMO
Due to global warming, an increased number of open fires is becoming a major contributor to PM2.5 pollution and thus a threat to public health. However, the burden of stillbirths attributable to fire-sourced PM2.5 is unknown. In low- and middle-income countries (LMICs), there is a co-occurrence of high baseline stillbirth rates and frequent firestorms, which may lead to a geographic disparity. Across 54 LMICs, we conducted a self-matched case-control study, making stillbirths comparable to the corresponding livebirths in terms of time-invariant characteristics (e.g., genetics) and duration of gestational exposure. We established a joint-exposure-response function (JERF) by simultaneously associating stillbirth with fire- and non-fire-sourced PM2.5 concentrations, which were estimated by fusing multi-source data, such as chemical transport model simulations and satellite observations. During 2000-2014, 35,590 pregnancies were selected from multiple Demographic and Health Surveys. In each mother, a case of stillbirth was compared to her livebirth(s) based on gestational exposure to fire-sourced PM2.5. We further applied the JERF to assess stillbirths attributable to fire-sourced PM2.5 in 136 non-Western countries. The disparity was evaluated using the Gini index. The risk of stillbirth increased by 17.4% (95% confidence interval [CI]: 1.6-35.7%) per 10 µg/m3 increase in fire-sourced PM2.5. In 2014, referring to a minimum-risk exposure level of 10 µg/m3, total and fire-sourced PM2.5 contributed to 922,860 (95% CI: 578,451-1,183,720) and 49,951 (95% CI: 3,634-92,629) stillbirths, of which 10% were clustered within the 6.4% and 0.6% highest-exposure pregnancies, respectively. The Gini index of stillbirths attributable to fire-sourced PM2.5 was 0.65, much higher than for total PM2.5 (0.28). Protecting pregnant women against PM2.5 exposure during wildfires is critical to avoid stillbirths, as the burden of fire-associated stillbirths leads to a geographic disparity in maternal health.
Assuntos
Poluição do Ar , Natimorto , Incêndios Florestais , Feminino , Humanos , Gravidez , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Estudos de Casos e Controles , Incêndios , Material Particulado/análise , Natimorto/epidemiologia , Incêndios Florestais/estatística & dados numéricosRESUMO
BACKGROUND: In 2021, WHO suggested new target concentration limits for long-term exposure to ambient ozone. However, the harmful effects of ozone on vulnerable children have not been sufficiently studied. We aimed to evaluate the association between long-term ozone exposure and mortality in children younger than 5 years (hereafter denoted under-5 mortality) in low-income and middle-income countries (LMICs) and to estimate this mortality burden for 97 LMICs. METHODS: By combining information from 128 Demographic and Health Surveys, we evaluated the association between the survival status of more than 1·2 million children younger than 5 years from 2457 sampling strata in 55 LMICs and the average peak-season ozone concentration during the life course, using a fixed-effects Cox model. A non-linear exposure-response function was developed by integrating the marginal effects of within-strata variation in exposure. We extrapolated the function obtained from the 55 LMICs to estimate the under-5 mortality burden attributable to ozone exposure in 97 LMICs, in which more than 95% of global deaths in this age group occur. FINDINGS: The fixed-effects model showed a robust association between ozone and under-5 mortality. According to the fully adjusted linear model, an increment of 10 ppb in the life-course average peak-season ozone concentration was associated with a 6·4% (95% CI 2·4-10·7) increase in the risk of under-5 mortality. The non-linear exposure-response function showed a sublinear curvature with a threshold, suggesting that the effect of ozone exposure was non-significant at concentrations lower than the first-stage interim target (100 µg/m3) recommended by WHO. Using this function, we estimate that, in 2010, long-term ozone exposure contributed to 153â361 (95% CI 17â077-276â768; 2·3% [0·3-4·1]) deaths of children younger than 5 years in 97 LMICs, which is equivalent to 56·8% of all ozone-related deaths in adults (269â785) in these countries. From 2003 to 2017, the ozone-related under-5 mortality burden decreased in most of the 97 LMICs. INTERPRETATION: Long-term exposure to ozone concentrations higher than the WHO first-stage interim target is a risk factor for under-5 mortality, and ozone exposure contributes substantially to mortality in this age group in LMICs. Increased efforts should be made to control ambient ozone pollution as this will lead to positive health benefits. FUNDING: Ministry of Science and Technology of the People's Republic of China and China National Natural Science Foundation.
Assuntos
Países em Desenvolvimento , Ozônio , Adulto , Criança , Humanos , Estudos Retrospectivos , China , Poluição Ambiental , Ozônio/efeitos adversosRESUMO
BACKGROUND: Long-term exposure to ambient fine particulate matter (PM2.5) has been linked to an increased risk of stroke. However, the effect of long-term exposure to PM2.5 and its major components on the functional disability of stroke patients remains unclear. METHODS: Based on China National Stroke Screening Survey data obtained from 2013 to 2019, we conducted a national multicenter longitudinal study of the associations of long-term exposure to PM2.5 and its components with the risk of disability after stroke in China. Post-stroke disability was assessed using the modified Rankin scale (mRS), which ranges from 0 to 5, with higher scores indicating greater disability. Long-term exposure to PM2.5 and its five components [sulfate (SO42-), nitrate (NO3-), ammonium salt (NH4+), organic matter (OM), and black carbon (BC)] was determined based on average concentrations during the 3 years preceding mRS administration according to the geographic coordinates of residential communities, using state-of-the-art estimates from multiple sources. We used a fixed-effect model to evaluate the associations between mRS scores and PM2.5 exposure, with adjustment for multiple covariates. RESULTS: Every 10 µg/m3 increase in PM2.5 was associated with a 0.019 (95% confidence interval, 0.003, 0.036) increase in mRS score, but the effect was not significant after adjusting for all covariates [0.016 (95% CI, -0.003, 0.032)]. For PM2.5 components, each IQR (7.92 µg/m3) increment in OM exposure was associated significantly with 0.062 (95% CI, 0.013, 0.111) increment in the mRS score. A significant association was observed between SO42- exposure and the mRS score [0.057 (95% CI, 0.003, 0.112), per IQR: 6.28⯵g/m3]. However, no significant association was found with BC, NO3-, or NH4+ exposure. Furthermore, the nonlinear curves were observed for the exposure-response relationship between PM2.5 exposure and the mRS score. CONCLUSION: Greater PM2.5 exposure increased the mRS score and was associated with post-stroke functional disability among stroke patients. However, different chemical components showed unequal neurotoxic effects, and long-term exposure to OM and SO42- may play a more important role. SYNOPSIS: This study reports fine particulate matter at higher concentrations damages the functional ability among specific stroke patients, and PM2.5 components have different neurotoxicities.