RESUMO
Background/aim: Medication overuse is common among chronic migraine patients and nonsteroidal antiinflammatory drugs (NSAIDs) are the most frequently overused drugs. The pathophysiological mechanisms underlying medication overuse headache (MOH) are not completely understood. Intestinal hyperpermeability and leaky gut are reported in patients using NSAIDs. The aim of the study is to investigate the role of leaky gut and inflammation in an MOH model MOH model in male rats. Methods: The study was conducted in male Sprague Dawley rats. There were two experimental groups. The first group was the chronic NSAID group in which the rats received mefenamic acid (n = 8) for four weeks intraperitoneally (ip) and the second group was the vehicle group (n = 8) that received 5% dimethyl sulfoxide+sesame oil (ip) for 4 weeks. We assessed spontaneous pain-like behavior, periorbital mechanical withdrawal thresholds, and anxiety-like behavior using an elevated plus maze test. After behavioral testing, serum levels of occludin and lipopolysaccharide-binding protein (LBP) and brain levels of IL-17, IL-6, and high mobility group box 1 protein (HMGB1) were evaluated with ELISA.Results: Serum LBP and occludin levels and brain IL-17 and HMGB1 levels were significantly elevated in the chronic NSAID group compared to its vehicle (p = 0.006, p = 0.016, p = 0.016 and p = 0.016 respectively) while brain IL-6 levels were comparable (p = 0.67) between the groups. The chronic NSAID group showed pain-like and anxiety-like behavior in behavioral tests. Brain IL-17 level was positively correlated with number of head shakes (r = 0.64, p = 0.045), brain IL-6 level was negatively correlated with periorbital mechanical withdrawal thresholds (r = -0.71, p = 0.049), and serum occludin level was positively correlated with grooming duration (r = 0.73, p = 0.032) in chronic NSAID group. Conclusion: Elevated serum occludin and LBP levels and brain IL-17 and HMGB1 levels indicate a possible role of leaky gut and inflammation in an MOH model in male rats. Additionally, a significant correlation between pain behavior and markers of inflammation and intestinal hyperpermeability, supports the role of inflammation and leaky gut in MOH pathophysiology.
Assuntos
Anti-Inflamatórios não Esteroides , Biomarcadores , Proteínas de Transporte , Modelos Animais de Doenças , Transtornos da Cefaleia Secundários , Interleucina-17 , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Biomarcadores/sangue , Transtornos da Cefaleia Secundários/sangue , Interleucina-17/sangue , Interleucina-17/metabolismo , Proteínas de Transporte/sangue , Proteínas de Transporte/metabolismo , Ocludina/metabolismo , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/metabolismo , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Interleucina-6/sangue , Inflamação/sangue , Inflamação/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Proteínas de Fase AgudaRESUMO
Background/aim: Phthalates are the materials used for plasticizing polyvinyl chloride. Di-(2-Ethylhexyl) phthalate (DEHP) is one of the phthalates most frequently used in a wide range of applications, including medical equipment such as endotracheal and feeding tubes, intravenous catheters, central lines, extracorporeal membrane oxygenation sets, total parenteral nutrition bags, blood product sets, and intravenous pump lines, respiratory sets in neonatal intensive care units (NICUs). Studies have shown that phthalates, including DEHP, can cross the placenta and blood-brain barrier, possibly leading to neurodevelopmental impairment in vitro and in vivo. However, the molecular mechanisms affected by phthalate exposure have not been explored in depth. This study aimed to illuminate the effects of DEHP on neuroinflammation at the molecular level using neonatal microglial cells as the model. Materials and methods: Mouse BV-2 neonatal microglia cells were exposed to DEHP under controlled conditions. Cellular toxicity was assessed via a cell viability assay and specific markers were used to evaluate the apoptosis/necrosis, cellular iron content, reactive oxygen species (ROS), and organelle integrity. Proinflammatory proteins were quantified using enzyme-linked immunosorbent assay, while ferroptosis was assessed using a ferroptosis blocker, and affected gene expressions were determined using quantitative reverse-transcriptase real-time polymerase chain reaction (RT-PCR). Results: The results revealed that high concentrations of DEHP exposure increased toxicity via increased levels of ROS and inflammation. Elevated ROS levels were observed to increase the tendency for mitochondrial-lysosomal disruption, bringing about apoptosis or necrosis. Moreover, iron homeostasis was dysregulated by DEHP, which putatively triggered ferroptosis in a dose-dependent manner. Conclusion: This study indicates that neonatal exposure to DEHP may be linked to neurodevelopmental impairment via inflammation-related cell death and ferroptosis. The prevalence of DEHP in NICU medical devices raises concerns about potential neurodevelopmental deficits, including disorders like autism and mental retardation. These findings highlight the urgency of addressing DEHP exposure in neonatal care.
Assuntos
Dietilexilftalato , Ferroptose , Microglia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Camundongos , Ferroptose/efeitos dos fármacos , Dietilexilftalato/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Animais Recém-Nascidos , Linhagem Celular , Ácidos Ftálicos/toxicidadeRESUMO
OBJECTIVE: Medication overuse headache (MOH) is a secondary headache that accompanies chronic migraine. Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most frequently used analgesics worldwide and they are known to induce leaky gut. In this study, we aimed to investigate whether NSAID induced MOH is associated with altered circulating lipopolysaccharide binding protein (LBP) levels and inflammatory molecules. MATERIALS AND METHODS: Piroxicam (10 mg/kg/day, po) for 5 weeks was used to induce MOH in female Sprague Dawley rats. Pain behavior was evaluated by periorbital withdrawal thresholds, head-face grooming, freezing, and head shake behavior. Serum samples and brain tissues were collected to measure circulating LBP, tight junction protein occludin, adherens junction protein vascular endothelial (VE)-cadherin, calcitonin gene-related peptide (CGRP), IL-6 levels and brain high mobility group box-1 (HMGB1) and IL-17 levels. RESULTS: Chronic piroxicam exposure resulted in decreased periorbital mechanical withdrawal thresholds, increased head-face grooming, freezing, and head shake behavior compared to vehicle administration. Serum LBP, CGRP, IL-6, IL-17, occludin, VE-cadherin levels and brain IL-17 and HMGB1 levels were significantly higher in piroxicam group compared to controls. Serum LBP was positively correlated with occludin (r = 0.611), VE-cadherin (r = 0.588), CGRP (r = 0.706), HMGB1 (r = 0.618) and head shakes (r = 0.921), and negatively correlated with periorbital mechanical withdrawal thresholds (r = -0.740). CONCLUSION: Elevated serum LBP, VE-cadherin and occludin levels indicating disrupted intestinal barrier function and leakage of LPS into the systemic circulation were shown in female rats with MOH. LPS induced low-grade inflammation and elevated nociceptive and/or pro-inflammatory molecules such as HMGB1, IL-6, IL-17 and CGRP may play a role in the development and maintenance of MOH. Interference with leaky gut and pro-inflammatory nociceptive molecules could also be a target for sustained management of MOH.
Assuntos
Proteína HMGB1 , Transtornos da Cefaleia Secundários , Ratos , Feminino , Animais , Lipopolissacarídeos , Peptídeo Relacionado com Gene de Calcitonina , Interleucina-17 , Ratos Sprague-Dawley , Piroxicam , Ocludina , Interleucina-6 , Anti-Inflamatórios não EsteroidesRESUMO
BACKGROUND/AIM: Certain constituents in migraine food triggers and non-steroidal anti-inflammatory drugs (NSAIDs) inhibit sulfotransferases (SULTs) that detoxify drugs/chemicals and play role in the metabolism of neurotransmitters. We aimed to dissect SULT1A1 modulation of CSD susceptibility and behavior in an in vivo experimental model using hesperidin, a SULT1A1 inhibitor found in citrus fruits (known migraine triggers) and mefenamic acid (SULT1A1 inhibitor), an NSAID to simulate medication overuse. METHODS: Hesperidin was used as SULT1A1 inhibitor found in citrus fruits, known migraine triggers and mefenamic acid (NSAID), another SULT1A1 inhibitor, was used to induce MO in rats. The groups were; 1) Hesperidin (ip) or its vehicle-DMSO (ip) 2) Chronic (4 weeks) mefenamic acid (ip) or its vehicle (ip) 3) Chronic mefenamic acid+hesperidin (ip) or DMSO (ip). CSD susceptibility was evaluated and behavioral testing was performed. SULT1A1 enzyme activity was measured in brain samples. RESULTS: Single-dose of hesperidin neither changed CSD susceptibility nor resulted in any behavioral change. Chronic mefenamic acid exposure resulted in increased CSD susceptibility, mechanical-thermal hypersensitivity, increased head shake, grooming and freezing and decreased locomotion. Single dose hesperidin administration after chronic mefenamic acid exposure resulted in increased CSD susceptibility and mechanical-thermal hypersensitivity, increased freezing and decreased locomotion. SULT1A1 enzyme activity was lower in mefenamic acid and mefenamic acid+hesperidin groups compared to their vehicles. CONCLUSION: Mefenamic acid and hesperidin have synergistic effect in modulating CSD susceptibility and pain behavior. Sulfotransferase inhibition may be the common mechanism by which food triggers and NSAIDs modulate migraine susceptibility. Further investigations regarding human provocation studies using hesperidin in migraine patients with medication overuse are needed.
Assuntos
Ácido Mefenâmico , Transtornos de Enxaqueca , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Humanos , Ácido Mefenâmico/metabolismo , Ácido Mefenâmico/farmacologia , Ácido Mefenâmico/uso terapêutico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Uso Excessivo de Medicamentos Prescritos , Ratos , Sulfotransferases/uso terapêuticoRESUMO
Autism is a neurodevelopmental disorder with limited treatment alternatives and which incidence is increasing. Some research suggests that vagus nerve simulation might lead to the reduction of certain symptom. Therefore, we aimed to examine the effect of bilateral transcutaneous auricular vagus nerve stimulation (tVNS) on the inflammatory response in an adult valproic acid (VPA) induced mouse (C57BL6) model of autism for the first time. The autism model was induced by oral VPA administration (600 mg·kg-1) to C57BL/6 pregnant mice on E12.5 days. The study included three groups: the VPA Transcutaneous Auricular Stimulation Group (VPA + tVNS), the VPA Control Group (VPA + sham), and the Healthy Control Group (Control + sham). Each group included 16 mice (8 M/8 F). Our results show that serum IL-1ß and IL-6 levels were significantly higher in male VPA-exposed mice than controls. However, IL-1ß was significantly lower, and IL-6, TNF- α, and IL-22 were not different in female VPA-exposed mice compared to the control group. Brain NLRP3 levels were significantly higher in both sexes in the VPA autism model (P < 0.05). tVNS application increased brain NLRP3 levels in both sexes and reduced serum IL-1ß levels in male mice. We conclude that cytokine dysregulation is associated with the VPA-induced adult autism model, and the inflammatory response is more pronounced in male mice. tVNS application altered the inflammatory response and increased brain NLPR3 levels in both sexes. Further studies are needed to understand the beneficial or detrimental role of the inflammatory response in autism and its sexual dimorphism.