Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Br J Nutr ; 122(10): 1091-1102, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31409428

RESUMO

Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-chain PUFA (LC-PUFA), EPA and DHA, from α-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from first feeding on diets that contain no EPA and DHA and to determine the influence of dietary LA and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5·9, 4·4 and 2·8 mg per g fish and that of n-6 LC-PUFA was 0·2, 0·5 and 1·4 mg per g fish in salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27·4 to 2·0, and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced about 28 µg n-3 LC-PUFA per g fish per d, with a DHA:EPA ratio of 3·4. Production of n-3 LC-PUFA exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 LC-PUFA production and EPA:ARA and DHA:ARA ratios but increased n-6 LC-PUFA production and DHA:EPA ratio.


Assuntos
Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Ômega-3/metabolismo , Ácido Linoleico/farmacologia , Salmo salar , Ácido alfa-Linolênico/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ácidos Graxos Ômega-3/química , Ácido Linoleico/metabolismo
2.
Br J Nutr ; 119(12): 1378-1392, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29845899

RESUMO

Facing a bottleneck in the growth of aquaculture, and a gap in the supply and demand of the highly beneficial n-3 long-chain PUFA (LC-PUFA), sustainable alternatives to traditional marine-based feeds are required. Therefore, in the present trial, a novel oil obtained from a genetically engineered oilseed crop, Camelina sativa, that supplied over 25 % n-3 LC-PUFA was tested as a sole dietary-added lipid source in Atlantic salmon (Salmo salar) feed. Three groups of fish were fed three experimental diets for 12 weeks with the same basal composition and containing 20 % added oil supplied by either a blend of fish oil and rapeseed oil (1:3) (COM) reflecting current commercial formulations, wild-type Camelina oil (WCO) or the novel transgenic Camelina oil (TCO). There were no negative effects on the growth, survival rate or health of the fish. The whole fish and flesh n-3 LC-PUFA levels were highest in fish fed TCO, with levels more than 2-fold higher compared with those of fish fed the COM and WCO diets, respectively. Diet TCO had no negative impacts on the evaluated immune and physiological parameters of head kidney monocytes. The transcriptomic responses of liver and mid-intestine showed only mild effects on metabolism genes. Overall, the results clearly indicated that the oil from transgenic Camelina was highly efficient in supplying n-3 LC-PUFA providing levels double that obtained with a current commercial standard, and similar to those a decade ago before substantial dietary fishmeal and oil replacement.


Assuntos
Ração Animal/análise , Brassicaceae/química , Brassicaceae/genética , Ácidos Graxos Insaturados/administração & dosagem , Óleos de Plantas/administração & dosagem , Salmo salar/crescimento & desenvolvimento , Animais , Dieta/veterinária , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Macrófagos/metabolismo , Plantas Geneticamente Modificadas , Salmo salar/genética , Salmo salar/metabolismo , Transcriptoma
3.
BMC Genet ; 15: 32, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628716

RESUMO

BACKGROUND: The salmon louse Lepeophtheirus salmonis is a parasitic copepod that infects salmonids in the Pacific and Atlantic oceans. Although considered as a single species, morphological and biological differences have been reported between lice from the two oceans. Likewise, studies based on nucleotide sequencing have demonstrated that sequence differences between Atlantic and Pacific L. salmonis are highly significant, albeit smaller than the divergence observed between congeneric copepod species. RESULTS: We demonstrated reproductive compatibility between L. salmonis from the two oceans and successfully established F2 hybrid strains using separate maternal lines from both the Pacific and Atlantic. The infection success for the F2 hybrid strains were similar to results typically observed for non hybrid lice strains in the rearing facility used. Lepeophtheirus salmonis COI and 16S sequences divergence between individuals from the Pacific and the Atlantic oceans was high compared to what may be expected within a copepod species and phylogenetic analysis showed that they consistently formed monophyletic clades representing their origin from the Pacific or Atlantic oceans. CONCLUSIONS: Lepeophtheirus salmonis from the Pacific and Atlantic oceans are reproductively compatible at least until adults at the F2 hybrid stage, and should not be regarded as separate species based on reproductive segregation or sequence divergence levels. Reported biological and genetic differences in L. salmonis seen in conjunction with the reported genetic diversity commonly observed between and within species demonstrate that Atlantic and Pacific L. salmonis should be regarded as two subspecies: Lepeophtheirus salmonis salmonis and L. salmonis oncorhynchi subsp. nov.


Assuntos
Copépodes/classificação , Filogenia , Salmão/parasitologia , Animais , Oceano Atlântico , Quimera , Copépodes/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Doenças dos Peixes/parasitologia , Variação Genética , Genótipo , Masculino , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Mar Biotechnol (NY) ; 23(4): 653-670, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34417678

RESUMO

A better understanding of carotenoid dynamics (transport, absorption, metabolism, and deposition) is essential to develop a better strategy to improve astaxanthin (Ax) retention in muscle of Atlantic salmon. To achieve that, a comparison of post-smolt salmon with (+ Ax) or without (- Ax) dietary Ax supplementation was established based on a transcriptomic approach targeting pyloric, hepatic, and muscular tissues. Results in post-smolts showed that the pyloric caeca transcriptome is more sensitive to dietary Ax supplementation compared to the other tissues. Key genes sensitive to Ax supplementation could be identified, such as cd36 in pylorus, agr2 in liver, or fbp1 in muscle. The most modulated genes in pylorus were related to absorption but also metabolism of Ax. Additionally, genes linked to upstream regulation of the ferroptosis pathway were significantly modulated in liver, evoking the involvement of Ax as an antioxidant in this process. Finally, the muscle seemed to be less impacted by dietary Ax supplementation, except for genes related to actin remodelling and glucose homeostasis. In conclusion, the transcriptome data generated from this study showed that Ax dynamics in Atlantic salmon is characterized by a high metabolism during absorption at pyloric caeca level. In liver, a link with a potential of ferroptosis process appears likely via cellular lipid peroxidation. Our data provide insights into a better understanding of molecular mechanisms involved in dietary Ax supplementation, as well as its beneficial effects in preventing oxidative stress and related inflammation in muscle.


Assuntos
Antioxidantes/metabolismo , Salmo salar/metabolismo , Animais , Dieta/veterinária , Fígado/metabolismo , Músculos/metabolismo , Pigmentação/fisiologia , Piloro/metabolismo , Salmo salar/genética , Transcriptoma , Xantofilas/metabolismo
5.
Mar Biotechnol (NY) ; 22(4): 581-593, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32588252

RESUMO

Astaxanthin (Ax), the main carotenoid responsible for the distinct red flesh color in salmonids (Oncorhynchus, Salvelinus, Salmo, and Parahucho), is added to the diet of farmed fish at a substantial cost. Despite the great economical value for the salmon industry, the key molecular mechanisms involved in the regulation of muscle coloration are poorly understood. Chinook salmon (Oncorhynchus tshawytscha) represent an ideal model to study flesh coloration because they exhibit a distinct color polymorphism responsible for two color morphs, white and red flesh pigmented fish. This study was designed to identify the molecular basis for the development of red and white coloration of fish reared under the same experimental conditions and to better understand the absorption mechanism of Ax in salmonids. Pyloric caeca, liver, and muscle of both groups (n = 6 each) were selected as the most likely critical target organs to be involved respectively in the intestinal uptake, metabolism, and retention of Ax. Difference in the transcriptome profile of each tissue using next-generation sequencing technology was conducted. Ten KEGG pathways were significantly enriched for differentially expressed genes between red and white salmon pylorus tissue, while none for the transcriptome profile in the other two tissues. Differential expressed gene (DE) analyses showed that there were relatively few differences in muscle (31 DE genes, p < 0.05) and liver (43 DE genes, p < 0.05) of white and red Chinook salmon compared approximately 1125 DE genes characterized in the pylorus tissue, with several linked to Ax binding ability, absorption, and metabolism.


Assuntos
Salmão/genética , Salmão/metabolismo , Transcriptoma , Animais , Aquicultura , Fígado/metabolismo , Músculos/metabolismo , Pigmentação/genética , Piloro/metabolismo , Xantofilas/metabolismo
7.
PLoS One ; 12(4): e0175415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403232

RESUMO

New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago.


Assuntos
Ração Animal , Brassicaceae/química , Mucosa Intestinal/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Salmo salar/crescimento & desenvolvimento , Transcriptoma , Animais , Brassicaceae/genética , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Óleos de Peixe/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Pesqueiros , Células Caliciformes/citologia , Intestinos/citologia , Metabolismo dos Lipídeos , Plantas Geneticamente Modificadas/genética , Salmo salar/metabolismo
8.
Chem Biol Interact ; 142(3): 269-83, 2003 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-12453665

RESUMO

Possible xenobiotic interactions with thiamine were studied in salmonid fish, by repeatedly injecting two model substances, paraquat and menadione, into juvenile rainbow trout (Oncorhynchus mykiss). These two substances were chosen because of their well-known ability to redox-cycle and cause depletion of NADPH in several biological systems. Depletion of NADPH increases metabolism through the pentose-phosphate shunt and may thereby increase the need for thiamine diphosphate by heightened transketolase activity. A special food was produced with lower thiamine content than commercial food, usually enriched with thiamine, which could mask an effect on the thiamine level. After 9 weeks of exposure, glucose-6-phosphate dehydrogenase, transketolase, glutathione reductase and ethoxyresorufin O-deethylase were analysed in liver and kidney cellular sub-fractions as well as analysis of total thiamine concentrations in liver, kidney and muscle. The results showed that paraquat caused a large increase in hepatic glutathione reductase activity and induced hepatic glucose-6-phosphate dehydrogenase activity, i.e., the rate-limiting enzyme in the oxidative part of the pentose-phosphate shunt. Despite this paraquat exposure did not affect transketolase activity and total thiamine concentration.


Assuntos
Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Paraquat/toxicidade , Via de Pentose Fosfato/efeitos dos fármacos , Tiamina/metabolismo , Vitamina K 3/farmacologia , Animais , Feminino , Glucosefosfato Desidrogenase/metabolismo , Glutationa Redutase/metabolismo , Masculino , NADP/metabolismo , Oncorhynchus mykiss , Oxirredução , Transcetolase/metabolismo , Xenobióticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA