RESUMO
Adipose tissue metabolism is actively involved in the regulation of energy balance. Adipose-derived stem cells (ASCs) play a critical role in maintaining adipose tissue function through their differentiation into mature adipocytes (Ad). This study aimed to investigate the impact of an obesogenic environment on the epigenetic landscape of ASCs and its impact on adipocyte differentiation and its metabolic consequences. Our results showed that ASCs from rats on a high-fat sucrose (HFS) diet displayed reduced adipogenic capacity, increased fat accumulation, and formed larger adipocytes than the control (C) group. Mitochondrial analysis revealed heightened activity in undifferentiated ASC-HFS but decreased respiratory and glycolytic capacity in mature adipocytes. The HFS diet significantly altered the H3K4me3 profile in ASCs on genes related to adipogenesis, mitochondrial function, inflammation, and immunomodulation. After differentiation, adipocytes retained H3K4me3 alterations, confirming the upregulation of genes associated with inflammatory and immunomodulatory pathways. RNA-seq confirmed the upregulation of genes associated with inflammatory and immunomodulatory pathways in adipocytes. Overall, the HFS diet induced significant epigenetic and transcriptomic changes in ASCs, impairing differentiation and causing dysfunctional adipocyte formation.NEW & NOTEWORTHY Obesity is associated with the development of chronic diseases like metabolic syndrome and type 2 diabetes, and adipose tissue plays a crucial role. In a rat model, our study reveals how an obesogenic environment primes adipocyte precursor cells, leading to epigenetic changes that affect inflammation, adipogenesis, and mitochondrial activity after differentiation. We highlight the importance of histone modifications, especially the trimethylation of histone H3 to lysine 4 (H3K4me3), showing its influence on adipocyte expression profiles.
Assuntos
Adipócitos , Adipogenia , Tecido Adiposo , Dieta Hiperlipídica , Epigênese Genética , Histonas , Transcriptoma , Animais , Ratos , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Histonas/metabolismo , Masculino , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Obesidade/metabolismo , Obesidade/genética , Reprogramação Celular/fisiologia , Células Cultivadas , Ratos Wistar , Ratos Sprague-DawleyRESUMO
Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.
Assuntos
Adipócitos Bege , Camundongos , Ratos , Animais , Ativação Transcricional , Adipócitos Bege/metabolismo , Genisteína/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Elementos de Resposta , Tecido Adiposo Marrom/metabolismoRESUMO
Today, the intratumoral composition is a relevant factor associated with the progression and aggression of cancer. Although it suggests a metabolic interdependence among the subpopulations inside the tumor, a detailed map of how this interdependence contributes to the malignant phenotype is still lacking. To address this issue, we developed a systems biology approach integrating single-cell RNASeq and genome-scale metabolic reconstruction to map the metabolic cross-feeding among the subpopulations previously identified in the spheroids of MCF7 breast cancer. By calibrating our model with expression profiles and the experimental growth rate, we concluded that the reverse Warburg effect emerges as a mechanism to optimize community growth. Furthermore, through an in silico analysis, we identified lactate, alpha-ketoglutarate, and some amino acids as key metabolites whose disponibility alters the growth rate of the spheroid. Altogether, this work provides a strategy for assessing how space and intratumoral heterogeneity influence the metabolic robustness of cancer, issues suggesting that computational strategies should move toward the design of optimized treatments.
Assuntos
Neoplasias da Mama , Simulação por Computador , Esferoides Celulares , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Esferoides Celulares/metabolismo , Células MCF-7 , Efeito Warburg em Oncologia , Biologia de Sistemas/métodosRESUMO
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin (p = 0.04) and the plasma concentrations of branched-chain (p = 0.007) and gluconeogenic (p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p (p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.
Assuntos
Aminoácidos , MicroRNA Circulante , Proteínas Alimentares , Resistência à Insulina , Obesidade , Período Pós-Prandial , Humanos , Proteínas Alimentares/administração & dosagem , Masculino , Obesidade/sangue , Obesidade/dietoterapia , Obesidade/genética , Obesidade/metabolismo , Feminino , Adulto , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Aminoácidos/sangue , Pessoa de Meia-Idade , Insulina/sangue , Glicemia/metabolismo , MicroRNAs/sangue , MicroRNAs/genéticaRESUMO
Hypothalamic circuits compute systemic information to control metabolism. Astrocytes residing within the hypothalamus directly sense nutrients and hormones, integrating metabolic information, and modulating neuronal responses. Nevertheless, the role of the astrocytic circadian clock on the control of energy balance remains unclear. We used mice with a targeted ablation of the core-clock gene Bmal1 within Gfap-expressing astrocytes to gain insight on the role played by this transcription factor in astrocytes. While this mutation does not substantially affect the phenotype in mice fed normo-caloric diet, under high-fat diet we unmasked a thermogenic phenotype consisting of increased energy expenditure, and catabolism in brown adipose and overall metabolic improvement consisting of better glycemia control, and body composition. Transcriptomic analysis in the ventromedial hypothalamus revealed an enhanced response to moderate cellular stress, including ER-stress response, unfolded protein response and autophagy. We identified Xbp1 and Atf1 as two key transcription factors enhancing cellular stress responses. Therefore, we unveiled a previously unknown role of the astrocytic circadian clock modulating energy balance through the regulation of cellular stress responses within the VMH.
Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Astrócitos/metabolismo , Hipotálamo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo Energético/genéticaRESUMO
Fiber intake is associated with a lower risk for Alzheimer´s disease (AD) in older adults. Intake of plant-based diets rich in soluble fiber promotes the production of short-chain fatty acids (SCFAs: butyrate, acetate, propionate) by gut bacteria. Butyrate administration has antiinflammatory actions, but propionate promotes neuroinflammation. In AD patients, gut microbiota dysbiosis is a common feature even in the prodromal stages of the disease. It is unclear whether the neuroprotective effects of fiber intake rely on gut microbiota modifications and specific actions of SCFAs in brain cells. Here, we show that restoration of the gut microbiota dysbiosis through the intake of soluble fiber resulted in lower propionate and higher butyrate production, reduced astrocyte activation and improved cognitive function in 6-month-old male APP/PS1 mice. The neuroprotective effects were lost in antibiotic-treated mice. Moreover, propionate promoted higher glycolysis and mitochondrial respiration in astrocytes, while butyrate induced a more quiescent metabolism. Therefore, fiber intake neuroprotective action depends on the modulation of butyrate/propionate production by gut bacteria. Our data further support and provide a mechanism to explain the beneficial effects of dietary interventions rich in soluble fiber to prevent dementia and AD. Fiber intake restored the concentration of propionate and butyrate by modulating the composition of gut microbiota in male transgenic (Tg) mice with Alzheimer´s disease. Gut dysbiosis was associated with intestinal damage and high propionate levels in control diet fed-Tg mice. Fiber-rich diet restored intestinal integrity and promoted the abundance of butyrate-producing bacteria. Butyrate concentration was associated with better cognitive performance in fiber-fed Tg mice. A fiber-rich diet may prevent the development of a dysbiotic microbiome and the related cognitive dysfunction in people at risk of developing Alzheimer´s disease.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Fármacos Neuroprotetores , Camundongos , Animais , Propionatos/farmacologia , Doença de Alzheimer/metabolismo , Microbioma Gastrointestinal/fisiologia , Disbiose , Fármacos Neuroprotetores/farmacologia , Butiratos/farmacologia , Butiratos/metabolismo , Fibras na Dieta/farmacologia , Camundongos Transgênicos , Disfunção Cognitiva/prevenção & controleRESUMO
SIRT7 is a NAD+ -dependent deacetylase that controls important aspects of metabolism, cancer, and bone formation. However, the molecular targets and functions of SIRT7 in the kidney are currently unknown. In silico analysis of kidney transcripts of the BXD murine genetic reference population revealed a positive correlation between Sirt7 and Slc12a7 mRNA expression, suggesting a link between the corresponding proteins that these transcripts encode, SIRT7, and the K-Cl cotransporter KCC4, respectively. Here, we find that protein levels and activity of heterologously expressed KCC4 are significantly modulated depending on its acetylation status in Xenopus laevis oocytes. Moreover, SIRT7 interacts with KCC4 in a NAD+ -dependent manner and increases its stability and activity in HEK293 cells. Interestingly, metabolic acidosis increases SIRT7 expression in kidney, as occurs with KCC4. In contrast, total SIRT7-deficient mice present lower KCC4 expression and an exacerbated metabolic acidosis than wild-type mice during an ammonium chloride challenge. Altogether, our data suggest that SIRT7 interacts with, stabilizes and modulates KCC4 activity through deacetylation, and reveals a novel role for SIRT7 in renal physiology.
Assuntos
Sirtuínas , Simportadores , Acetilação , Animais , Células HEK293 , Humanos , Rim , Camundongos , Sirtuínas/genética , Sirtuínas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Cotransportadores de K e Cl-RESUMO
The present study aimed to determine the prevalence of adiposity-based chronic disease (ABCD) and its association with anthropometric indices in the Mexican population. A cross-sectional study was conducted in 514 adults seen at a clinical research unit. The American Association of Clinical Endocrinology/AACE/ACE criteria were used to diagnose ABCD by first identifying subjects with BMI ≥ 25 kg/m2 and those with BMI of 23-24·9 kg/m2 and waist circumference ≥ 80 cm in women or ≥ 90 cm in men. The presence of metabolic and clinical complications associated with adiposity, such as factors related to metabolic syndrome, prediabetes, type 2 diabetes, dyslipidaemia and arterial hypertension, were subsequently evaluated. Anthropometric indices related to cardiometabolic risk factors were then determined. The results showed the prevalence of ABCD was 87·4 % in total, 91·5 % in men and 86 % in women. The prevalence of ABCD stage 0 was 2·4 %, stage 1 was 33·7 % and stage 2 was 51·3 %. The prevalence of obesity according to BMI was 57·6 %. The waist/hip circumference index (prevalence ratio (PR) = 7·57; 95 % CI 1·52, 37·5) and the conicity index (PR = 3·46; 95 % CI 1·34, 8·93) were better predictors of ABCD, while appendicular skeletal mass % and skeletal muscle mass % decreased the risk of developing ABCD (PR = 0·93; 95 % CI 0·90, 0·96; and PR = 0·95; 95 % CI 0·93, 0·98). In conclusion, the prevalence of ABCD in our study was 87·4 %. This prevalence increased with age. It is important to emphasise that one out of two subjects had severe obesity-related complications (ABCD stage 2).
Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Masculino , Humanos , Feminino , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Adiposidade , Índice de Massa Corporal , Prevalência , Antropometria , Circunferência da Cintura , Doença Crônica , Fatores de RiscoRESUMO
Obesity causes systemic inflammation, hepatic and renal damage, as well as gut microbiota dysbiosis. Alternative vegetable sources rich in polyphenols are known to prevent or delay the progression of metabolic abnormalities during obesity. Vachellia farnesiana (VF) is a potent source of polyphenols with antioxidant and anti-inflammatory activities with potential anti-obesity effects. We performed an in vivo preventive or an interventional experimental study in mice and in vitro experiments with different cell types. In the preventive study, male C57BL/6 mice were fed with a Control diet, a high-fat diet, or a high-fat diet containing either 0.1% methyl gallate, 10% powdered VFP, or 0.5%, 1%, or 2% of a polyphenolic extract (PE) derived from VFP (Vachellia farnesiana pods) for 14 weeks. In the intervention study, two groups of mice were fed for 14 weeks with a high-fat diet and then one switched to a high-fat diet with 10% powdered VFP for ten additional weeks. In the in vitro studies, we evaluated the effect of a VFPE (Vachellia farnesiana polyphenolic extract) on glucose-stimulated insulin secretion in INS-1E cells or of naringenin or methyl gallate on mitochondrial activity in primary hepatocytes and C2C12 myotubes. VFP or a VFPE increased whole-body energy expenditure and mitochondrial activity in skeletal muscle; prevented insulin resistance, hepatic steatosis, and kidney damage; exerted immunomodulatory effects; and reshaped fecal gut microbiota composition in mice fed a high-fat diet. VFPE decreased insulin secretion in INS-1E cells, and its isolated compounds naringenin and methyl gallate increased mitochondrial activity in primary hepatocytes and C2C12 myotubes. In conclusion VFP or a VFPE prevented systemic inflammation, insulin resistance, and hepatic and renal damage in mice fed a high-fat diet associated with increased energy expenditure, improved mitochondrial function, and reduction in insulin secretion.
Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Prebióticos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Inflamação/tratamento farmacológicoRESUMO
Branched-chain amino acids (BCAA) are considered markers of insulin resistance (IR) in subjects with obesity. In this study, we evaluated whether the presence of the SNP of the branched-chain aminotransferase 2 (BCAT2) gene can modify the effect of a dietary intervention (DI) on the plasma concentration of BCAA in subjects with obesity and IR. A prospective cohort study of adult subjects with obesity, BMI ≥ 30 kg/m2, homeostatic model assessment-insulin resistance (HOMA-IR ≥ 2·5) no diagnosed chronic disease, underwent a DI with an energy restriction of 3140 kJ/d and nutritional education for 1 month. Anthropometric measurements, body composition, blood pressure, resting energy expenditure, oral glucose tolerance test results, serum biochemical parameters and the plasma amino acid profile were evaluated before and after the DI. SNP were assessed by the TaqMan SNP genotyping assay. A total of eighty-two subjects were included, and fifteen subjects with a BCAT2 SNP had a greater reduction in leucine, isoleucine, valine and the sum of BCAA. Those subjects also had a greater reduction in skeletal muscle mass, fat-free mass, total body water, blood pressure, muscle strength and biochemical parameters after 1 month of the DI and adjusting for age and sex. This study demonstrated that the presence of the BCAT2 SNP promotes a greater reduction in plasma BCAA concentration after adjusting for age and sex, in subjects with obesity and IR after a 1-month energy-restricted DI.
Assuntos
Resistência à Insulina , Proteínas da Gravidez , Adulto , Humanos , Estudos Prospectivos , Glicemia/metabolismo , Aminoácidos de Cadeia Ramificada , Obesidade/metabolismo , Transaminases/genética , Proteínas da Gravidez/genética , Antígenos de Histocompatibilidade MenorRESUMO
Carbohydrate responsive element-binding protein (ChREBP) has been identified as a primary transcription factor that maintains energy homeostasis through transcriptional regulation of glycolytic, lipogenic, and gluconeogenic enzymes in response to a high-carbohydrate diet. Amino acids are important substrates for gluconeogenesis, but nevertheless, knowledge is lacking about whether this transcription factor regulates genes involved in the transport or use of these metabolites. Here, we demonstrate that ChREBP represses the expression of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) in response to a high-sucrose diet in rats by binding to a carbohydrate response element (ChoRE) site located -160 bp upstream of the transcriptional start site in the SNAT2 promoter region. Additionally, immunoprecipitation assays revealed that ChREBP and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) interact with each other, as part of the complex that repress SNAT2 expression. The interaction between these proteins was confirmed by an in vivo chromatin immunoprecipitation assay. These findings suggest that glucogenic amino acid uptake by the liver is controlled by ChREBP through the repression of SNAT2 expression in rats consuming a high-carbohydrate diet.NEW & NOTEWORTHY This study highlights the key role of carbohydrate responsive element-binding protein (ChREBP) in the fine-tuned regulation between glucose and amino acid metabolism in the liver via regulation of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) expression after the consumption of a high-carbohydrate diet. ChREBP binds to a carbohydrate response element (ChoRE) site in the SNAT2 promoter region and recruits silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor to reduce SNAT2 transcription. This study revealed that ChREBP prevents the uptake of glucogenic amino acids upon the consumption of a high-carbohydrate diet.
Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carboidratos da Dieta/farmacologia , Correpressor 2 de Receptor Nuclear/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicemia/análise , Glicemia/metabolismo , Imunoprecipitação da Cromatina , Dieta , Regulação para Baixo , Hepatócitos/metabolismo , Masculino , Correpressor 2 de Receptor Nuclear/genética , Cultura Primária de Células , Ratos , Ratos Wistar , Sacarose/farmacologia , Transcrição Gênica/efeitos dos fármacosRESUMO
BACKGROUND: Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in this way to insulin resistance. METHODS: Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10-12 years old) and amino acid targeted metabolomics analysis was performed by LC-MS/MS in serum samples. By using the HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contributed to serum BCAA levels and insulin resistance markers. RESULTS: We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly, Faecalibacterium prausnitzii contributed to approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over an extended data set (N = 124). CONCLUSIONS: We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.
Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Faecalibacterium prausnitzii/fisiologia , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Aminoácidos de Cadeia Ramificada/metabolismo , Biomarcadores , Pesos e Medidas Corporais , Criança , Feminino , Humanos , Resistência à Insulina , Masculino , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Obesidade/metabolismo , Vigilância em Saúde PúblicaRESUMO
Pancreatic cancer remains one of the most lethal diseases with dismal five-year survival rates. Although mutant KRas protein-driven activation of downstream MAPK Raf/MEK/ERK and PI3K/Akt signaling pathways represent major oncogenic alterations, signaling blockade with MEK and PI3K inhibitors has shown that intrinsic resistance may hamper the effectiveness of this targeted approach. However, there have been no mass spectrometry-based proteomic studies for in-depth comparison of protein expression differences between pancreatic cancer cells with sensitivity and resistance to MEK and PI3K kinase inhibitors. In this work, we compared PANC-1 and MIA PaCa-2 pancreatic cancer cells which are, respectively, resistant and sensitive to MEK- and PI3K-targeted therapy. We conducted a label-free data-independent acquisition mass spectrometry (SWATH-MS) study with extensive peptide fractionation to quantitate 4808 proteins and analyze differential expression of 743 proteins between resistant and sensitive cells. This allowed identification of the tumor suppressor protein phosphatase 2A (PP2A) and proteins from mitochondrial respiratory complex I implicated in oxidative phosphorylation as alternative candidate drug targets for cells resistant to MEK and PI3K inhibition. PP2A activator DT-061 decreased viability of PANC-1 cells and this was accompanied by reduced expression of c-Myc. PANC-1 cells also showed response to metformin and the novel complex I inhibitor IACS-010759. These findings provide insights into the distinct cellular proteomes and point out alternative pharmacological targets for MEK and PI3K inhibition-resistant pancreatic cancer cells.
Assuntos
Espectrometria de Massas/métodos , Neoplasias Pancreáticas/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oxidiazóis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Proteoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologiaRESUMO
BACKGROUND: Dietary bioactive compounds have been demonstrated to produce several health benefits. Genistein, an isoflavone of soy protein, and resveratrol, a polyphenol from grapes, have been shown to improve insulin sensitivity and to stimulate white adipose tissue (WAT) browning, leading to increased energy expenditure. However, it has not been demonstrated in humans whether genistein or resveratrol have the capacity to stimulate the differentiation of stromal vascular fraction (SVF) cells from white fat into beige adipocytes. SUBJECTS/METHODS: With this aim, we assessed whether stromal vascular fraction cells obtained from biopsies of the subdermal fat depots of subjects with normal body weight (NW) or from subjects with overweight/obesity with (OIR) or without (OIS) insulin resistance were able to differentiate into the beige adipose tissue lineage in vitro, by exposing the cells to genistein, resveratrol, or the combination of both. RESULTS: The results showed that SVF cells obtained from NW or OIS subjects were able to differentiate into beige adipocytes according to an increased expression of beige biomarkers including UCP1, PDRM-16, PGC1α, CIDEA, and SHOX2 upon exposure to genistein. However, SVF cells from OIR subjects were unable to differentiate into beige adipocytes with any of the inducers. Exposure to resveratrol or the combination of resveratrol/genistein did not significantly stimulate the expression of browning markers in any of the groups studied. We found that the non-responsiveness of the SVF from subjects with obesity and insulin resistance to any of the inducers was associated with an increase in the expression of endoplasmic reticulum stress markers. CONCLUSION: Consumption of genistein may stimulate WAT browning mainly in NW or OIS subjects. Thus, obesity associated with insulin resistance may be considered as a condition that prevents some beneficial effects of some dietary bioactive compounds.
Assuntos
Adipócitos Bege/fisiologia , Diferenciação Celular/efeitos dos fármacos , Genisteína/farmacologia , Resistência à Insulina/fisiologia , Fração Vascular Estromal/fisiologia , Adulto , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Psicometria/instrumentação , Psicometria/métodos , Fração Vascular Estromal/metabolismo , Inquéritos e QuestionáriosRESUMO
PURPOSE: We compared the effect of diets with different amounts and sources of dietary protein on insulin sensitivity (IS) in subjects with obesity and insulin resistance (IR). METHODS: Eighty subjects with obesity (BMI ≥ 30 kg/m2) and IR (Matsuda index < 4.3 and HOMA-IR ≥ 2.5) over 18 years old were randomized to four groups for a one-month period: a normal protein diet (< 20%) with a predominance of animal protein (Animal NP) or vegetable protein (Vegetable NP) and a high-protein diet (25-30%) with a predominance of animal protein (Animal HP) or vegetable protein (Vegetable HP). Baseline and final measurements of body weight, body composition, biochemical parameters, blood pressure (BP), resting energy expenditure and plasma amino acid profiles were performed. RESULTS: Body weight, BMI and waist circumference decreased in all groups. Interestingly, the IS improved more in the Animal HP (Matsuda index; 1.39 vs 2.58, P = 0.003) and in the Vegetable HP groups (Matsuda index; 1.44 vs 3.14, P < 0.0001) after one month. The fat mass, triglyceride levels, C-reactive protein levels and the leptin/adiponectin index decreased; while, the skeletal muscle mass increased in the Animal and Vegetable HP groups. The BP decreased in all groups except the Animal NP group. CONCLUSION: Our study demonstrates that a high-protein hypocaloric diets improves IS by 60-90% after one month in subjects with obesity and IR, regardless of weight loss and the source of protein, either animal or vegetable. TRIAL REGISTRATION: The trial is registered at clinicaltrials.gov (NCT03627104), August 13, 2018.
Assuntos
Resistência à Insulina , Adolescente , Índice de Massa Corporal , Dieta Redutora , Proteínas Alimentares , Humanos , Obesidade , Redução de PesoRESUMO
BACKGROUND AND AIM: Circulating amino acids are modified by sex, body mass index (BMI) and insulin resistance (IR). However, whether the presence of genetic variants in branched-chain amino acid (BCAA) catabolic enzymes modifies circulating amino acids is still unknown. Thus, we determined the frequency of two genetic variants, one in the branched-chain aminotransferase 2 (BCAT2) gene (rs11548193), and one in the branched-chain ketoacid dehydrogenase (BCKDH) gene (rs45500792), and elucidated their impact on circulating amino acid levels together with clinical, anthropometric and biochemical parameters. METHODS AND RESULTS: We performed a cross-sectional comparative study in which we recruited 1612 young adults (749 women and 863 men) aged 19.7 ± 2.1 years and with a BMI of 24.9 ± 4.7 kg/m2. Participants underwent clinical evaluation and provided blood samples for DNA extraction and biochemical analysis. The single nucleotide polymorphisms (SNPs) were determined by allelic discrimination using real-time polymerase chain reaction (PCR). The frequencies of the less common alleles were 15.2 % for BCAT2 and 9.83 % for BCKDH. The subjects with either the BCAT2 or BCKDH SNPs displayed no differences in the evaluated parameters compared with subjects homozygotes for the most common allele at each SNP. However, subjects with both SNPs had higher body weight, BMI, blood pressure, glucose, and circulating levels of aspartate, isoleucine, methionine, and proline than the subjects homozygotes for the most common allele (P < 0.05, One-way ANOVA). CONCLUSION: Our findings suggest that the joint presence of both the BCAT2 rs11548193 and BCKDH rs45500792 SNPs induces metabolic alterations that are not observed in subjects without either SNP.
Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Aminoácidos/sangue , Antígenos de Histocompatibilidade Menor/genética , Polimorfismo de Nucleotídeo Único , Proteínas da Gravidez/genética , Transaminases/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Adolescente , Fatores Etários , Biomarcadores/sangue , Glicemia/análise , Pressão Sanguínea , Índice de Massa Corporal , Estudos Transversais , Feminino , Frequência do Gene , Estudos de Associação Genética , Homozigoto , Humanos , Masculino , México , Antígenos de Histocompatibilidade Menor/metabolismo , Fenótipo , Proteínas da Gravidez/metabolismo , Transaminases/metabolismo , Adulto JovemRESUMO
OBJECTIVE: There is not enough information on the classification of oxalate content in several foods, particularly in ethnic foods, to recommend their consumption in subjects with urolithiasis (UL). The objective of the present study was to generate reliable information on the oxalate content and antioxidant activity in different foods and classify them by very low, low, medium, high and very high oxalate content and antioxidant activity. METHODS: The oxalate content of 109 foods including ethnic foods was assessed by an enzymatic assay, and the antioxidant activity was measured by the oxygen radical absorbance capacity to determine the oxalate/antioxidant activity ratio. Oxalate consumption was then evaluated in 400 subjects with overweight and obesity using 24-h dietary recalls. RESULTS: The main foods with high oxalate content were raw spinach, huanzontle, purslane, chard, almond, and toasted and sweetened roasted amaranth. The highest antioxidant activity was found in strawberries, all types of chocolates, roselle, morita peppers, and pinolillo. Subjects with overweight or obesity exceed the dietary oxalate daily intake recommendation. CONCLUSIONS: The classification of foods by their oxalate content and antioxidant activity will be very useful to generate nutritional recommendation in different diseases, mainly UL.
Assuntos
Antioxidantes/análise , Dieta/métodos , Etnicidade , Análise de Alimentos/métodos , Sobrepeso/metabolismo , Oxalatos/análise , Adulto , Idoso , Antioxidantes/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxalatos/metabolismo , Capacidade de Absorbância de Radicais de Oxigênio , Adulto JovemRESUMO
Owing to their antioxidant properties, caffeoylquinic acid (CQA)-derivatives could potentially improve the impaired metabolism in hepatic cells, however, their effect on mitochondrial function has not been demonstrated yet. Here, we evaluated the impact of three CQA-derivatives extracted from purple sweet potato, namely 5-CQA, 3,4- and 4,5-diCQA, on mitochondrial activity in primary hepatocytes using an extracellular flux analyzer. Notably, an increase of maximal respiration and spare respiratory capacity were observed when 5-CQA and 3,4-diCQA were added to the system indicating the improved mitochondrial function. Moreover, 3,4-diCQA was shown to considerably increase glycolytic reserve which is a measure of cell capability to respond to an energy demand through glycolysis. Conversely, 4,5-diCQA did not modify mitochondrial activity but increased glycolysis at low concentration in primary hepatocytes. All compounds tested improved cellular capacity to oxidize fatty acids. Overall, our results demonstrated the potential of test CQA-derivatives to modify mitochondrial function in hepatic cells. It is especially relevant in case of dysfunctional mitochondria in hepatocytes linked to hepatic steatosis during obesity, diabetes, and metabolic syndrome.
Assuntos
Hepatócitos/efeitos dos fármacos , Ipomoea batatas/química , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ácido Quínico/análogos & derivados , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ácido Quínico/química , Ácido Quínico/isolamento & purificação , Ácido Quínico/farmacologiaRESUMO
In recent decades, there has been an increase in the presence of metabolic disorders associated with obesity. Central in the treatment of these conditions, including abnormalities in glucose and lipid metabolism, dietary strategies play an important role. However, dietary recommendations are based on the generalization of nutrient or food intake response for all individuals, which not necessarily impacts the health of all individuals. The concept of personalized nutrition or precision nutrition has been recently developed, which states that diet is not the only factor accountable for metabolic responses such as postprandial glucose peaks, but that other factors are also involved, one of the most important of which is the gut microbiota. Therefore, the future of nutritional interventions is to generate algorithms based on the type of food consumed, biochemical parameters, physical activity, genetic variability, and especially the gut microbiota to predict the type of diet a person requires according to his or her metabolic alterations.
Assuntos
Microbioma Gastrointestinal , Nutrigenômica , Medicina de Precisão , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Estado NutricionalRESUMO
Goat's milk is a rich source of bioactive compounds (peptides, conjugated linoleic acid, short chain fatty acids, monounsaturated and polyunsaturated fatty acids, polyphenols such as phytoestrogens and minerals among others) that exert important health benefits. However, goat's milk composition depends on the type of food provided to the animal and thus, the abundance of bioactive compounds in milk depends on the dietary sources of the goat feed. The metabolic impact of goat milk rich in bioactive compounds during metabolic challenges such as a high-fat (HF) diet has not been explored. Thus, we evaluated the effect of milk from goats fed a conventional diet, a conventional diet supplemented with 30% Acacia farnesiana (AF) pods or grazing on metabolic alterations in mice fed a HF diet. Interestingly, the incorporation of goat's milk in the diet decreased body weight and body fat mass, improved glucose tolerance, prevented adipose tissue hypertrophy and hepatic steatosis in mice fed a HF diet. These effects were associated with an increase in energy expenditure, augmented oxidative fibers in skeletal muscle, and reduced inflammatory markers. Consequently, goat's milk can be considered a non-pharmacologic strategy to improve the metabolic alterations induced by a HF diet. Using the body surface area normalization method gave a conversion equivalent daily human intake dose of 1.4 to 2.8 glasses (250 mL per glass/day) of fresh goat milk for an adult of 60 kg, which can be used as reference for future clinical studies.