Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 134: 105239, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926658

RESUMO

Subchronic and chronic reference values (RfVs) were derived for 1,3-butadiene (BD) based upon its ability to cause reproductive and developmental effects observed in laboratory mice and rats. Metabolism has been well-established as an important determinant of the toxicity of BD. A major challenge to human health risk assessment is presented by large quantitative species differences in the metabolism of BD, differences that should be accounted for when the rodent toxicity responses are extrapolated to humans. The methods of Fred et al. (2008)/Motwani and Törnqvist (2014) were extended and applied here to the noncancer risk assessment of using data-derived extrapolation factors to account for species differences in metabolism, as well as differences in cytotoxic potency of three BD metabolites. This approach made use of biomarker data (hemoglobin adducts) to quantify species differences in the internal doses of BD metabolites experienced in mice, rats and humans. Using these methods, the dose-response relationships in mice and rats exhibit improved concordance, and result in subchronic and chronic inhalation reference values of 29 and 10 ppm, respectively, for BD. Confidence in these reference values is considered high, based on high confidence in the key studies, medium-to-high confidence in the toxicity database, high confidence in the estimates of internal dose, and high confidence in the dose-response modeling.


Assuntos
Butadienos , Reprodução , Animais , Biomarcadores , Butadienos/metabolismo , Butadienos/toxicidade , Humanos , Camundongos , Ratos , Valores de Referência
2.
Chem Commun (Camb) ; 54(9): 1061-1064, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29323674

RESUMO

5-Methylcytosine (MeC) is an endogenous modification of DNA that plays a crucial role in DNA-protein interactions, chromatin structure, epigenetic regulation, and DNA repair. MeC is produced via enzymatic methylation of the C-5 position of cytosine by DNA-methyltransferases (DNMT) which use S-adenosylmethionine (SAM) as a cofactor. Hemimethylated CG dinucleotides generated as a result of DNA replication are specifically recognized and methylated by maintenance DNA methyltransferase 1 (DNMT1). The accuracy of DNMT1-mediated methylation is essential for preserving tissue-specific DNA methylation and thus gene expression patterns. In the present study, we synthesized DNA duplexes containing MeC analogues with modified C-5 side chains and examined their ability to guide cytosine methylation by the human DNMT1 protein. We found that the ability of 5-alkylcytosines to direct cytosine methylation decreased with increased alkyl chain length and rigidity (methyl > ethyl > propyl ∼ vinyl). Molecular modeling studies indicated that this loss of activity may be caused by the distorted geometry of the DNA-protein complex in the presence of unnatural alkylcytosines.


Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Metilação de DNA , DNA/metabolismo , Cristalografia por Raios X , DNA/química , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular
3.
Mutat Res ; 447(2): 287-303, 2000 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-10751613

RESUMO

Tissue inflammation and chronic infection lead to the overproduction of nitric oxide and superoxide. These two species rapidly combine to yield peroxynitrite (ONOO(-)), a powerful oxidizing and nitrating agent that is thought be involved in both cell death and an increased cancer risk observed for inflamed tissues. ONOO(-) has been shown to induce single-strand breaks and base damage in DNA and is mutagenic in the supF gene, inducing primarily G to T transversions clustered at the 5' end of the gene. The mutagenicity of ONOO(-) is believed to result from chemical modifications at guanine nucleobases leading to miscoding DNA lesions. In the present work, we applied a combination of molecular and analytical techniques in an attempt to identify biologically important DNA modifications induced by ONOO(-). pUC19 plasmid treated with ONOO(-) contained single-strand breaks resulting from direct sugar damage at the DNA backbone, as well as abasic sites and nucleobase modifications repaired by Fpg glycosylase. The presence of carbon dioxide in the reaction mixture shifted the ONOO(-) reactivity towards reactions at nucleobases, while suppressing the oxidation of deoxyribose. To further study the chemistry of the ONOO(-) interactions with DNA, synthetic oligonucleotides representing the mutation-prone region of the supF gene were treated with ONOO(-), and the products were analyzed by liquid chromatography-negative ion electrospray ionization mass spectrometry (LC-ESI(-) MS) and tandem mass spectrometry. 8-Nitroguanine (8-nitro-G) was formed in ONOO(-)-treated oligonucleotides in a dose-dependent manner with a maximum at a ratio of [ONOO(-)]: [DNA]=10 and a decline at higher ONOO(-) concentrations, suggesting further reactions of 8-nitro-G with ONOO(-). 8-Nitro-G was spontaneously released from oligonucleotides (t(1/2)=1 h at 37 degrees C) and, when present in DNA, was not recognized by Fpg glycosylase. To obtain more detailed information on ONOO(-)-induced DNA damage, a restriction fragment from the pSP189 plasmid containing the supF gene (135 base pairs) was [32P]-end-labeled and treated with ONOO(-). PAGE analysis of the products revealed sequence-specific lesions at guanine nucleobases, including the sites of mutational "hotspots." These lesions were repaired by Fpg glycosylase and cleaved by hot piperidine treatment, but they were resistant to depurination at 90 degrees C. Since 8-nitro-G is subject to spontaneous depurination, and 8-oxo-guanine is not efficiently cleaved by piperidine, these results suggest that alternative DNA lesion(s) contribute to ONOO(-) mutagenicity. Further investigation of the identities of DNA modifications responsible for the adverse biological effects of ONOO(-) is underway in our laboratory.


Assuntos
Dano ao DNA , Nitratos/farmacologia , Oxidantes/farmacologia , RNA de Transferência/efeitos dos fármacos , Sequência de Bases , DNA/efeitos dos fármacos , DNA/genética , Relação Dose-Resposta a Droga , Genes Supressores , Guanina/análogos & derivados , Guanina/análise , Espectrometria de Massas/métodos , Mutação , Oligonucleotídeos/genética , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética , RNA de Transferência/genética
4.
Chem Res Toxicol ; 13(7): 658-64, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10898599

RESUMO

Synthetic oligodeoxynucleotides containing secondary oxidative lesions at guanine nucleobases have been prepared by the site-specific oxidation by ONOO(-) of oligomers containing 8-oxoguanine (8-oxo-G). The oligomers have been tested for their stability to the standard hot piperidine treatment that is commonly used to uncover oxidized DNA lesions. While DNA containing oxaluric acid and oxazolone was cleaved at the site of modification under hot piperidine conditions, the corresponding cyanuric acid and 8-oxo-G lesions were resistant to piperidine. The recognition of the oxidative lesions by formamidopyrimidine glycosylase (Fpg enzyme) was examined in double-stranded versions of the synthetic oligodeoxynucleotides. Fpg efficiently excised 8-oxo-G and oxaluric acid and to some extent oxazolone, but not cyanuric acid. These data suggest that some DNA lesions formed via ONOO(-) exposures (cyanuric acid) are not repaired by Fpg and are not uncovered by assays based on piperidine cleavage at the site of lesion. Our results indicate that cryptic secondary and tertiary oxidation products arising from 8-oxo-G may contribute to the overall mutational spectra arising from oxidative stress.


Assuntos
Guanina/análogos & derivados , Nitratos/química , Cromatografia Líquida de Alta Pressão , DNA/química , DNA/efeitos dos fármacos , DNA/metabolismo , Reparo do DNA , DNA-Formamidopirimidina Glicosilase , Guanina/química , Guanina/metabolismo , N-Glicosil Hidrolases/metabolismo , Nitratos/farmacologia , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Oxidantes/química , Oxidantes/farmacologia , Oxirredução , Piperidinas/química , Piperidinas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Chem Res Toxicol ; 12(5): 459-66, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10328757

RESUMO

8-Oxoguanine (8-oxo-G) is one of the most common DNA lesions present in normal tissues due to exposure to reactive oxygen species. Studies at this and other laboratories suggest that 8-oxo-G is highly susceptible to secondary oxidation, making it a likely target for endogenous oxidizing agents, such as peroxynitrite (ONOO-). Synthetic oligonucleotides containing 8-oxoguanine were treated with ONOO-, and the reaction products were analyzed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI--MS). CCACAACXCAAA, CCAAAGGXAGCAG, CCAAAXGGAGCAG, and TCCCGAGCGGCCAAAGGXAGCAG (X is 8-oxo-G) were found to readily react with peroxynitrite via the same transformations as those observed for free 8-oxo-2'-deoxyguanosine. The composition of the reaction mixtures was a function of ONOO- concentration and of the storage time after exposure. The oligonucleotide products isolated at low [ONOO-]/[DNA] ratios (<5) were tentatively assigned as containing 3a-hydroxy-5-imino-3,3a,4,5-tetrahydro-1H-imidazo[4, 5d]imidazol-2-one, 5-iminoimidazolidine-2,4-dione, and its hydrolytic product, oxaluric acid. At a [ONOO-]/[DNA] ratio of >10, 2,4,6-trioxo[1,3,5]triazinane-1-carboxamidine- and cyanuric acid-containing oligomers were the major products. The exact location of a modified base within a DNA sequence was determined using exonuclease digestion of oligonucleotide products followed by LC/ESI--MS analysis of the fragments. For all 8-oxo-G-containing oligomers, independent of the sequence, the reactions with ONOO- took place at the 8-oxo-G residues. These results suggest that 8-oxo-G, if present in DNA, is rapidly oxidized by peroxynitrite and that oxaluric acid is a likely secondary oxidation product of 8-oxo-G under physiological conditions.


Assuntos
Guanina/análogos & derivados , Nitratos/química , Oligonucleotídeos/química , Oxidantes/química , Cromatografia Líquida , DNA/química , Guanina/química , Indicadores e Reagentes , Espectrometria de Massas , Ácido Oxâmico/análogos & derivados , Ácido Oxâmico/química
6.
Chem Res Toxicol ; 12(7): 566-74, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10409395

RESUMO

1,3-Butadiene (BD) is a high-volume chemical used in the production of rubber and plastic. BD is a potent carcinogen in mice and a much weaker carcinogen in rats, and has been classified as a probable human carcinogen. Upon metabolic activation in vivo, it forms DNA-reactive metabolites, 1,2-epoxy-3-butene (EB), 1,2:3, 4-diepoxybutane (DEB), and 3,4-epoxy-1,2-butanediol (EBD). The molecular dosimetry of N-7 guanine adduct formation by these metabolites of BD in liver, lung, and kidney of B6C3F1 mice and F344 rats exposed to 0, 20, 62.5, or 625 ppm BD was studied. The adducts, racemic and meso forms of N-7-(2,3,4-trihydroxybut-1-yl)guanine (THB-Gua), N-7-(2-hydroxy-3-buten-1-yl)guanine (EB-Gua I), and N-7-(1-hydroxy-3-buten-2-yl)guanine (EB-Gua II), were isolated from DNA by neutral thermal hydrolysis, desalted on solid-phase extraction cartridges, and quantitated by LC/ESI(+)/MS/MS. The number of adducts per 10(6) normal guanine bases for a given adduct was higher in mice than rats exposed to 625 ppm BD, but generally similar at lower levels of exposure. The THB-Gua adducts were the most abundant (6-27 times higher than EB-Gua) and exhibited a nonlinear exposure-response relationship. In rats, the exposure-response curves for the formation of THB-Gua adducts reached a plateau after 62.5 ppm, suggesting saturation of metabolic activation. The number of THB-Gua adducts continued to increase in mice between 62.5 and 625 ppm BD. In contrast, the less common EB-Gua adducts had a linear exposure-response relationship in both species. Combining the information from this study with previous data on BD metabolism, we were able to estimate the number of THB-Gua that resulted from DEB and EBD, and conclude that most of the THB-Gua is formed from EBD. We hypothesize that most of the EBD arises from the immediate conversion of DEB to EBD within the endoplasmic reticulum. This study highlights the need for measurements of the levels of EBD in tissues of rats and mice and for the development of a unique biomarker for DEB that is available for binding to DNA.


Assuntos
Butadienos/metabolismo , Carcinógenos/metabolismo , Adutos de DNA , Guanina/análogos & derivados , Administração por Inalação , Animais , Biotransformação , Butadienos/administração & dosagem , Butadienos/farmacocinética , Carcinógenos/administração & dosagem , Carcinógenos/farmacocinética , Cromatografia Líquida , Feminino , Guanina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Endogâmicos F344 , Estereoisomerismo , Distribuição Tecidual
7.
Rapid Commun Mass Spectrom ; 14(20): 1949-53, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11013425

RESUMO

A series of 3,7-dialkyl-1,5-diphenyl-3,7-diazabicyclo[3.3. 1]nonan-9-ones was prepared, and the details of their fragmentation under electron ionization (EI) were elucidated. The molecular ions of each compound under consideration were quite abundant in their EI spectra. Full-scan spectra exhibited a number of fragment ions which were clearly assigned using MS/MS and accurate mass measurements. The basic fragmentation of 3,7-dialkyl-1,5-diphenylbispidinones was due to the cleavage of C(1)-C(2) bond followed by a hydrogen migration similar to an odd-electron McLafferty rearrangement. Alternatively, the C(1)-C(2) bond cleavage was followed by the elimination of an imine molecule, Alk-N=CH(2). Further fragmentation resulted in ions at m/z 234 and 103, present in the spectra of all the compounds under study. The fragmentation pathways proposed in this paper are based on the substituent shifts, accurate mass measurements and collision-induced dissociation spectra of selected ions. The results of the present work can be useful in selecting the fragment ions suitable for identification and quantitation of bispidinones in biological matrices.


Assuntos
Anestésicos Locais/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Cromatografia em Camada Fina , Elétrons , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
8.
Environ Sci Technol ; 28(4): 606-13, 1994 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22196542
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA