Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230199, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38736332

RESUMO

The DESTINY+(Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) Dust Analyser (DDA) is a state-of-the-art dust telescope for the in situ analysis of cosmic dust particles. As the primary scientific payload of the DESTINY+ mission, it serves the purpose of characterizing the dust environment within the Earth-Moon system, investigating interplanetary and interstellar dust populations at 1 AU from the Sun and studying the dust cloud enveloping the asteroid (3200) Phaethon. DDA features a two-axis pointing platform for increasing the accessible fraction of the sky. The instrument combines a trajectory sensor with an impact ionization time-of-flight mass spectrometer, enabling the correlation of dynamical, physical and compositional properties for individual dust grains. For each dust measurement, a set of nine signals provides the surface charge, particle size, velocity vector, as well as the atomic, molecular and isotopic composition of the dust grain. With its capabilities, DDA is a key asset in advancing our understanding of the cosmic dust populations present along the orbit of DESTINY+. In addition to providing the scientific context, we are presenting an overview of the instrument's design and functionality, showing first laboratory measurements and giving insights into the observation planning. This article is part of a theme issue 'Dust in the Solar System and beyond'.

2.
Nature ; 558(7711): 564-568, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950623

RESUMO

Saturn's moon Enceladus harbours a global water ocean 1 , which lies under an ice crust and above a rocky core 2 . Through warm cracks in the crust 3 a cryo-volcanic plume ejects ice grains and vapour into space4-7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10-12, powered by tidal dissipation 13 . So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus' organic inventory in enhanced concentrations.


Assuntos
Meio Ambiente Extraterreno/química , Saturno , Exobiologia , Gelo/análise , Volatilização
3.
Sci Rep ; 14(1): 14017, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951135

RESUMO

The formation of planets in our solar system encompassed various stages of accretion of planetesimals that formed in the protoplanetary disk within the first few million years at different distances to the sun. Their chemical diversity is reflected by compositionally variable meteorite groups from different parent bodies. There is general consensus that their formation location is roughly constrained by a dichotomy of nucleosynthetic isotope anomalies, relating carbonaceous (C) meteorite parent bodies to the outer protoplanetary disk and the non-carbonaceous (NC) parent bodies to an origin closer to the sun. It is a common idea, that in these inner parts of the protoplanetary disks, planetesimal accretion processes were faster. Testing such scenarios requires constraining formation ages of meteorite parent bodies. Although isotopic age dating can yield precise formation ages of individual mineral constituents of meteorites, such ages frequently represent mineral cooling ages that can postdate planetesimal formation by millions or tens of millions of years, depending on the cooling history of individual planetesimals at different depths. Nevertheless, such cooling ages provide a detailed thermal history which can be fitted by thermal evolution models that constrain the formation age of individual parent bodies. Here we apply state-of-the-art thermal evolution models to constrain planetesimal formation times particular in the outer solar system formation region of C meteorites. We infer a temporally distributed accretion of various parent bodies from < 0.6 Ma to ≈ 4 Ma after solar system formation, with 3.7 Ma and 2.5 - 2.75 Ma for the parent bodies of CR1-3 chondrites and the Flensburg carbonaceous chondrite, and < 0.6 and < 0.7 Ma for the parent bodies of differentiated achondrites NWA 6704 and NWA 011, respectively. This implies that accretion processes in the C reservoir started as early as in the NC reservoir and were operating throughout typical protoplanetary disk lifetimes, thereby producing differentiated parent bodies with carbonaceous compositions in addition to undifferentiated C chondrite parent bodies. The accretion times correlate inversely with the degree of the meteorites' alteration, metamorphism, or differentiation. The accretion times for the CM, CI, Ryugu, and Tafassite parent bodies of 3.8 Ma, 3.8 Ma, 1 - 3 Ma, and 1.1 Ma, respectively, fit well into this correlation in agreement with the thermal and alteration conditions suggested by these meteorites. Our results indicate that individual planetesimals formed rapidly (i.e., within < 1 Ma), however, distinct planetesimals formed recurrently throughout the total lifetime of the protoplanetary disk. Rapid individual formation is consistent with streaming instabilities assisted by gravitational collapse. However, obviously not the total dust inventory was consumed at early disk evolution stages, so there must have been some delay mechanisms, e.g. collisional destruction of precursor aggregates due to high impact velocities induced by radial drift phenomena. This counterbalance enabled late ( > 2 - 3 Ma) accretion of C planetesimals beyond the snow line which escaped severe planetesimal heating and volatile loss, hence, preserving their volatiles, especially water. Only this delayed formation of water-rich planetesimals allowed Earth to accrete sufficient water to become a habitable planet, preventing it from being a bone dry planet.

4.
Anal Chim Acta ; 705(1-2): 48-55, 2011 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-21962347

RESUMO

Random projection (RP) is a simple and fast linear method for dimensionality reduction of high-dimensional multivariate data, independent from the data. The method is briefly described and a new memory-saving algorithm is presented for the generation of random projection vectors. Application of RP to data from scanning experiments with a time-of-flight secondary ion mass spectrometer (TOF-SIMS) showed that data reduced by RP have a satisfying discriminant property for separating target material and minerals without using any knowledge about the composition of the sample. A selection method--based on low dimensional RP data--is described and successfully tested for automatic recognition of characteristic, diverse locations of a sample surface. RP is demonstrated as an unbiased, powerful method, especially for large data sets, severe hardware restrictions (such as in space experiments) or the need for fast data evaluation of hyperspectral data.

5.
Nature ; 422(6931): 502-6, 2003 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-12673245

RESUMO

Our Solar System formed approximately 4.6 billion years ago from the collapse of a dense core inside an interstellar molecular cloud. The subsequent formation of solid bodies took place rapidly. The period of &<10 million years over which planetesimals were assembled can be investigated through the study of meteorites. Although some planetesimals differentiated and formed metallic cores like the larger terrestrial planets, the parent bodies of undifferentiated chondritic meteorites experienced comparatively mild thermal metamorphism that was insufficient to separate metal from silicate. There is debate about the nature of the heat source as well as the structure and cooling history of the parent bodies. Here we report a study of 244Pu fission-track and 40Ar-39Ar thermochronologies of unshocked H chondrites, which are presumed to have a common, single, parent body. We show that, after fast accretion, an internal heating source (most probably 26Al decay) resulted in a layered parent body that cooled relatively undisturbed: rocks in the outer shells reached lower maximum metamorphic temperatures and cooled faster than the more recrystallized and chemically equilibrated rocks from the centre, which needed approximately 160 Myr to reach 390K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA