Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Limnol Oceanogr Methods ; 16(10): 696-709, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30450019

RESUMO

Headwater streams are important in the carbon cycle and there is a need to better parametrize and quantify exchange of carbon-relevant gases. Thus, we characterized variability in the gas exchange coefficient (k 2) and dissolved oxygen (O2) gas transfer velocity (k) in two lowland headwaters of the River Avon (UK). The traditional one-station open-water method was complemented by in situ quantification of riverine sources and sinks of O2 (i.e., groundwater inflow, photosynthesis, and respiration in both the water column and benthic compartment) enabling direct hourly estimates of k 2 at the reach-scale (~ 150 m) without relying on the nighttime regression method. Obtained k 2 values ranged from 0.001 h-1 to 0.600 h-1. Average daytime k 2 were a factor two higher than values at night, likely due to diel changes in water temperature and wind. Temperature contributed up to 46% of the variability in k on an hourly scale, but clustering temperature incrementally strengthened the statistical relationship. Our analysis suggested that k variability is aligned with dominant temperature trends rather than with short-term changes. Similarly, wind correlation with k increased when clustering wind speeds in increments correspondent with dominant variations (1 m s-1). Time scale is thus an important consideration when resolving physical drivers of gas exchange. Mean estimates of k 600 from recent parametrizations proposed for upscaling, when applied to the settings of this study, were found to be in agreement with our independent O2 budget assessment (within < 10%), adding further support to the validity of upscaling efforts aiming at quantifying large-scale riverine gas emissions.

2.
Mar Environ Res ; 65(3): 235-49, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18082251

RESUMO

The purpose of this research was to investigate the potential causes of low oxygen levels in the bottom water of the Oyster Grounds region of the shallow southern North Sea, an area which provides suitable conditions for low oxygen levels to develop. At the end of the summer stratified period, relevant biogeochemical processes were investigated using a combination of sedimentary and water column rate measurements. Phytoplankton nitrate and ammonium uptake was measured throughout the water column using (15)N labelled isotopes and showed ammonium uptake dominated in the upper and bottom mixed layer with a maximum 294.4 micromol N m(-3)h(-1). In the deep chlorophyll maximum at the thermocline, primary production was dominated by nitrate uptake, with an average of 35.0 micromol N m(-3)h(-1), relative to ammonium uptake, with an average of 24.6 micromol N m(-3)h(-1). This high relative nitrate uptake will in part result in exportable new production to the isolated bottom mixed layer and sediments, as opposed to regenerated ammonium driven uptake. This biomass export was indicated by significant benthic oxygen consumption rates in the stratified region (782-1275 micromol O(2)m(-2)h(-1)micromol N m(-3)h(-1)) long after the end of the spring bloom. The sediments were also an active net source of nitrate, ammonium, phosphate and silicate into the bottom mixed layer of 4.4, 8.4, 2.3 and 68.8 micromol m(-2)h(-1), respectively. The export of new production within the thermocline to the bottom mixed layer and the consequent sediment oxygen consumption in the isolated bottom mixed layer in the Oyster Grounds are expected to have contributed to the low bottom water oxygen concentrations of 2.07 mg l(-1) (64.7 micromol l(-1)) measured. The long stratified period associated with this low oxygen is predicted to occur more regularly in the future and continued monitoring of this ecologically important region is therefore essential if the causes of these potentially damaging low oxygen levels are to be fully understood.


Assuntos
Ecossistema , Monitoramento Ambiental , Ostreidae/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Animais , Biomassa , Sedimentos Geológicos , Hipóxia , Nitratos/metabolismo , Isótopos de Nitrogênio , Mar do Norte , Fotossíntese , Fitoplâncton/metabolismo , Compostos de Amônio Quaternário/metabolismo , Estações do Ano
3.
Nat Commun ; 8: 14847, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322218

RESUMO

Biological oceanic processes, principally the surface production, sinking and interior remineralization of organic particles, keep atmospheric CO2 lower than if the ocean was abiotic. The remineralization length scale (RLS, the vertical distance over which organic particle flux declines by 63%, affected by particle respiration, fragmentation and sinking rates) controls the size of this effect and is anomalously high in oxygen minimum zones (OMZ). Here we show in the Eastern Tropical North Pacific OMZ 70% of POC remineralization is due to microbial respiration, indicating that the high RLS is the result of lower particle fragmentation by zooplankton, likely due to the almost complete absence of zooplankton particle interactions in OMZ waters. Hence, the sensitivity of zooplankton to ocean oxygen concentrations can have direct implications for atmospheric carbon sequestration. Future expansion of OMZs is likely to increase biological ocean carbon storage and act as a negative feedback on climate change.

4.
Water Res ; 45(16): 4909-22, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21813153

RESUMO

The relative magnitudes of, and factors controlling, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in the soil of a re-connected temperate floodplain divided into four different land management zones (grazing grassland, hay meadow, fritillary meadow and a buffer zone). Soil samples were collected from each zone to measure their respective potentials for nitrate attenuation using 15N both at the surface and at depth in the soil column and additional samples were collected to measure the lability of the organic carbon. Denitrification capacity ranged between 0.4 and 4.2 (µmol N g(-1) dry soil d(-1)) across the floodplain topsoil and DNRA capacity was an order of magnitude lower (0.01-0.71 µmol N g(-1) d(-1)). Land management practice had a significant effect on denitrification but no significant effects were apparent for DNRA. In this nitrogen-rich landscape, spatial heterogeneity in denitrification was explained by differences in lability and the magnitude of organic carbon associated with different management practices (mowing and grazing). The lability of organic carbon was significantly higher in grazing grassland in comparison to other ungrazed areas of the floodplain, and consequently denitrification capacity was also highest in this area. Our results indicate that bacteria capable of DNRA do survive in frequently flooded riparian zones, and to a limited extent, compete with denitrification for nitrate, acting to retain and recycle nitrogen in the floodplain. Exponential declines in both denitrification and DNRA capacity with depth in the floodplain soils of a hay meadow and buffer zone were controlled primarily by the organic carbon content of the soils. Furthermore, grazing could be employed in re-connected, temperate floodplains to enhance the potential for nitrate removal from floodwaters via denitrification.


Assuntos
Nitratos/química , Compostos de Amônio Quaternário/química , Poluentes da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA