Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(5): 1101-1112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38013635

RESUMO

Nodulins and nodulin-like proteins play an essential role in the symbiotic associations between legumes and Rhizobium bacteria. Their role extends beyond the leguminous species, as numerous nodulin-like proteins, including early nodulin-like proteins (ENODL), have been identified in various non-leguminous plants, implying their involvement in functions beyond nodulation, such as nutrient transport and growth modulation. Some ENODL proteins have been associated with plant defense against pathogens, as evident in banana infected with Xanthomonas campestris pv. musacearum (Xcm) causing banana Xanthomonas wilt (BXW) disease. Nonetheless, the specific role of ENODL in plant defense remains to be fully elucidated. The MusaENODL3 gene was found to be repressed in BXW-resistant banana progenitor 'Musa balbisiana' and 20-fold upregulated in BXW-susceptible cultivar 'Gonja Manjaya' upon early infection with Xcm. To further unravel the role of the ENODL gene in disease resistance, the CRISPR/Cas9 system was employed to disrupt the MusaENODL3 gene in 'Gonja Manjaya' precisely. Analysis of the enodl3 edited events confirmed the accurate manipulation of the MusaENODL3 gene. Disease resistance and gene expression analysis demonstrated that editing the MusaENODL3 gene resulted in resistance to BXW disease, with 50% of the edited plants remaining asymptomatic. The identification and manipulation of the MusaENODL3 gene highlight its potential as a critical player in plant-pathogen interactions, offering new opportunities for enhancing disease resistance in crops like banana, an important staple food crop and source of income for resource-poor farmers in the tropics. This study provides the first evidence of the direct role of the ENODL3 gene in developing disease-resistant plants.


Assuntos
Proteínas de Membrana , Musa , Proteínas de Plantas , Xanthomonas campestris , Xanthomonas , Xanthomonas campestris/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446177

RESUMO

The cultivation of bananas and plantains (Musa spp.) holds significant global economic importance, but faces numerous challenges, which may include diverse abiotic and biotic factors such as drought and various diseases caused by fungi, viruses, and bacteria. The genetic and asexual nature of cultivated banana cultivars makes them unattractive for improvement via traditional breeding. To overcome these constraints, modern biotechnological approaches like genetic modification and genome editing have become essential for banana improvement. However, these techniques rely on somatic embryogenesis, which has only been successfully achieved in a limited number of banana cultivars. Therefore, developing new strategies for improving somatic embryogenesis in banana is crucial. This review article focuses on advancements in banana somatic embryogenesis, highlighting the progress, the various stages of regeneration, cryopreservation techniques, and the molecular mechanisms underlying the process. Furthermore, this article discusses the factors that could influence somatic embryogenesis and explores the prospects for improving the process, especially in recalcitrant banana cultivars. By addressing these challenges and exploring potential solutions, researchers aim to unlock the full potential of somatic embryogenesis as a tool for banana improvement, ultimately benefiting the global banana industry.


Assuntos
Musa , Musa/genética , Melhoramento Vegetal , Biotecnologia
3.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408979

RESUMO

Banana is an important staple food crop and a source of income for smallholder farmers in about 150 tropical and sub-tropical countries. Several bacterial diseases, such as banana Xanthomonas wilt (BXW), blood, and moko disease, cause substantial impacts on banana production. There is a vast yield gap in the production of bananas in regions where bacterial pathogens and several other pathogens and pests are present together in the same field. BXW disease caused by Xanthomonas campestris pv. musacearum is reported to be the most destructive banana disease in East Africa. The disease affects all the banana varieties grown in the region. Only the wild-type diploid banana, Musa balbisiana, is resistant to BXW disease. Developing disease-resistant varieties of bananas is one of the most effective strategies to manage diseases. Recent advances in CRISPR/Cas-based gene editing techniques can accelerate banana improvement. Some progress has been made to create resistance against bacterial pathogens using CRISPR/Cas9-mediated gene editing by knocking out the disease-causing susceptibility (S) genes or activating the expression of the plant defense genes. A synopsis of recent advancements and perspectives on the application of gene editing for the control of bacterial wilt diseases are presented in this article.


Assuntos
Infecções Bacterianas , Musa , Xanthomonas , Infecções Bacterianas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Musa/genética , Musa/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas/genética
8.
Plant Biotechnol J ; 12(6): 663-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24612254

RESUMO

Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa.


Assuntos
Resistência à Doença/imunologia , Musa/imunologia , Musa/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Xanthomonas campestris/fisiologia , Bioensaio , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Musa/genética , Musa/crescimento & desenvolvimento , Óperon/genética , Oryza , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Regeneração , Reprodutibilidade dos Testes
9.
Front Bioeng Biotechnol ; 12: 1395772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219618

RESUMO

Banana (Musa spp.), including plantain, is one of the major staple food and cash crops grown in over 140 countries in the subtropics and tropics, with around 153 million tons annual global production, feeding about 400 million people. Despite its widespread cultivation and adaptability to diverse environments, banana production faces significant challenges from pathogens and pests that often coexist within agricultural landscapes. Recent advancements in CRISPR/Cas-based gene editing offer transformative solutions to enhance banana resilience and productivity. Researchers at IITA, Kenya, have successfully employed gene editing to confer resistance to diseases such as banana Xanthomonas wilt (BXW) by targeting susceptibility genes and banana streak virus (BSV) by disrupting viral sequences. Other breakthroughs include the development of semi-dwarf plants, and increased ß-carotene content. Additionally, non-browning banana have been developed to reduce food waste, with regulatory approval in the Philippines. The future prospects of gene editing in banana looks promising with CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi) techniques offering potential for improved disease resistance. The Cas-CLOVER system provides a precise alternative to CRISPR/Cas9, demonstrating success in generating gene-edited banana mutants. Integration of precision genetics with traditional breeding, and adopting transgene-free editing strategies, will be pivotal in harnessing the full potential of gene-edited banana. The future of crop gene editing holds exciting prospects for producing banana that thrives across diverse agroecological zones and offers superior nutritional value, ultimately benefiting farmers and consumers. This article highlights the pivotal role of CRISPR/Cas technology in advancing banana resilience, yield and nutritional quality, with significant implications for global food security.

10.
Mol Plant Pathol ; 25(1): e13402, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933591

RESUMO

Cassava (Manihot esculenta) is one of the most important sources of dietary calories in the tropics, playing a central role in food and economic security for smallholder farmers. Cassava production is highly constrained by several pests and diseases, mostly cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). These diseases cause significant yield losses, affecting food security and the livelihoods of smallholder farmers. Developing resistant varieties is a good way of increasing cassava productivity. Although some levels of resistance have been developed for some of these diseases, there is observed breakdown in resistance for some diseases, such as CMD. A frequent re-evaluation of existing disease resistance traits is required to make sure they are still able to withstand the pressure associated with pest and pathogen evolution. Modern breeding approaches such as genomic-assisted selection in addition to biotechnology techniques like classical genetic engineering or genome editing can accelerate the development of pest- and disease-resistant cassava varieties. This article summarizes current developments and discusses the potential of using molecular genetics and genomics to produce cassava varieties resistant to diseases and pests.


Assuntos
Manihot , Manihot/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Genômica , Biologia Molecular
11.
Plant Genome ; 17(2): e20471, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923724

RESUMO

Regular measurement of realized genetic gain allows plant breeders to assess and review the effectiveness of their strategies, allocate resources efficiently, and make informed decisions throughout the breeding process. Realized genetic gain estimation requires separating genetic trends from nongenetic trends using the linear mixed model (LMM) on historical multi-environment trial data. The LMM, accounting for the year effect, experimental designs, and heterogeneous residual variances, estimates best linear unbiased estimators of genotypes and regresses them on their years of origin. An illustrative example of estimating realized genetic gain was provided by analyzing historical data on fresh cassava (Manihot esculenta Crantz) yield in West Africa (https://github.com/Biometrics-IITA/Estimating-Realized-Genetic-Gain). This approach can serve as a model applicable to other crops and regions. Modernization of breeding programs is necessary to maximize the rate of genetic gain. This can be achieved by adopting genomics to enable faster breeding, accurate selection, and improved traits through genomic selection and gene editing. Tracking operational costs, establishing robust, digitalized data management and analytics systems, and developing effective varietal selection processes based on customer insights are also crucial for success. Capacity building and collaboration of breeding programs and institutions also play a significant role in accelerating genetic gains.


Assuntos
Manihot , Melhoramento Vegetal , Melhoramento Vegetal/métodos , Manihot/genética , África Subsaariana , Produtos Agrícolas/genética , Genótipo , Modelos Genéticos
12.
Plant Dis ; 97(1): 123-130, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30722270

RESUMO

The effect of exogenous applications of potassium (K), calcium (Ca), and nitrogen (N) on the susceptibility of four banana cultivars to Banana Xanthomonas wilt (BXW) was studied. Murashige and Skoog (MS) medium with normal concentrations of K at 783 mg/liter, Ca at 121 mg/liter, and N at 841 mg/liter was modified to contain various concentrations of K, Ca, and N. Each nutrient was varied singly, each with three replicate experiments. The concentrations were K at 78, 157, 391, 783, 1,565, and 3,913 mg/liter; Ca at 12, 24, 60, 121, 241, and 603 mg/liter; and N at 84, 168, 420, 841, and 1,682 mg/liter. Plantlets were generated in vitro on normal MS medium and later exposed to the nutrient concentrations for a total of 8 weeks. Thereafter, they were artificially inoculated with Xanthomonas campestris pv. musacearum using an insulin syringe. In each nutrient, plantlets exposed to higher nutrient concentrations significantly (P < 0.0001) accumulated more nutrient in their tissues compared with those exposed to lesser nutrient concentrations. Wilt incidences were significantly reduced, and incubation periods (time from inoculation to appearance of first disease symptoms) increased, with increasing nutrient application. The study lays a background for in vivo studies aimed at management of BXW using nutrients, such as fertilizer application.

13.
Plant Genome ; : e20416, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012108

RESUMO

Banana is an important food security crop for millions of people in the tropics but it faces challenges from diseases and pests. Traditional breeding methods have limitations, prompting the exploration of precision genetic tools like genetic modification and genome editing. Extensive efforts using transgenic approaches have been made to develop improved banana varieties with resistance to banana Xanthomonas wilt, Fusarium wilt, and nematodes. However, these efforts should be extended for other pests, diseases, and abiotic stresses. The commercialization of transgenic crops still faces continuous challenges with regulatory and public acceptance. Genome editing, particularly CRISPR/Cas, offers precise modifications to the banana genome and has been successfully applied in the improvement of banana. Targeting specific genes can contribute to the development of improved banana varieties with enhanced resistance to various biotic and abiotic constraints. This review discusses recent advances in banana improvement achieved through genetic modification and genome editing.

14.
PLoS One ; 18(9): e0290884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656732

RESUMO

Banana Xanthomonas wilt (BXW) caused by Xanthomonas campestris pv. musacearum (Xcm) is a severe bacterial disease affecting banana production in East and Central Africa, where banana is cultivated as a staple crop. Classical breeding of banana is challenging because the crop is clonally propagated and has limited genetic diversity. Thus, genetic engineering serves as a viable alternative for banana improvement. Studies have shown that transfer of the elongation factor Tu receptor gene (AtEFR) from Arabidopsis thaliana to other plant species can enhance resistance against bacterial diseases. However, AtEFR activity in banana and its efficacy against Xcm has not been demonstrated. In this study, transgenic events of banana (Musa acuminata) cultivar dwarf Cavendish expressing the AtEFR gene were generated and evaluated for resistance against Xcm under greenhouse conditions. The transgenic banana events were responsive to the EF-Tu-derived elf18 peptide and exhibited enhanced resistance to BXW disease compared to non-transgenic control plants. This study suggests that the functionality of AtEFR is retained in banana with the potential of enhancing resistance to BXW under field conditions.


Assuntos
Arabidopsis , Musa , Xanthomonas campestris , Xanthomonas , Xanthomonas campestris/genética , Arabidopsis/genética , Musa/genética , Melhoramento Vegetal
15.
Front Genome Ed ; 4: 876697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647578

RESUMO

Sustainable intensification of agriculture in Africa is essential for accomplishing food and nutritional security and addressing the rising concerns of climate change. There is an urgent need to close the yield gap in staple crops and enhance food production to feed the growing population. In order to meet the increasing demand for food, more efficient approaches to produce food are needed. All the tools available in the toolbox, including modern biotechnology and traditional, need to be applied for crop improvement. The full potential of new breeding tools such as genome editing needs to be exploited in addition to conventional technologies. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing has rapidly become the most prevalent genetic engineering approach for developing improved crop varieties because of its simplicity, efficiency, specificity, and easy to use. Genome editing improves crop variety by modifying its endogenous genome free of any foreign gene. Hence, genome-edited crops with no foreign gene integration are not regulated as genetically modified organisms (GMOs) in several countries. Researchers are using CRISPR/Cas-based genome editing for improving African staple crops for biotic and abiotic stress resistance and improved nutritional quality. Many products, such as disease-resistant banana, maize resistant to lethal necrosis, and sorghum resistant to the parasitic plant Striga and enhanced quality, are under development for African farmers. There is a need for creating an enabling environment in Africa with science-based regulatory guidelines for the release and adoption of the products developed using CRISPR/Cas9-mediated genome editing. Some progress has been made in this regard. Nigeria and Kenya have recently published the national biosafety guidelines for the regulation of gene editing. This article summarizes recent advances in developments of tools, potential applications of genome editing for improving staple crops, and regulatory policies in Africa.

16.
Plants (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804880

RESUMO

The banana aphid, Pentalonia nigronervosa, is the sole insect vector of banana bunchy top virus (BBTV), the causal agent of banana bunchy top disease. The aphid acquires and transmits BBTV while feeding on infected banana plants. RNA interference (RNAi) enables the generation of pest and disease-resistant crops; however, its effectiveness relies on the identification of pivotal gene sequences to target and silence. Acetylcholinesterase (AChE) is an essential enzyme responsible for the hydrolytic metabolism of the neurotransmitter acetylcholine in animals. In this study, the AChE gene of the banana aphid was targeted for silencing by RNAi through transgenic expression of AChE dsRNA in banana and plantain plants. The efficacy of dsRNA was first assessed using an artificial feeding assay. In vitro aphid feeding on a diet containing 7.5% sucrose, and sulfate complexes of trace metals supported aphid growth and reproduction. When AChE dsRNA was included in the diet, a dose of 500 ng/µL was lethal to the aphids. Transgenic banana cv. Cavendish Williams and plantain cvs. Gonja Manjaya and Orishele expressing AChE dsRNA were regenerated and assessed for transgene integration and copy number. When aphids were maintained on elite transgenic events, there was a 67.8%, 46.7%, and 75.6% reduction in aphid populations growing on Cavendish Williams, Gonja Manjaya, and Orishele cultivars, respectively, compared to those raised on nontransgenic control plants. These results suggest that RNAi targeting an essential aphid gene could be a useful means of reducing both aphid infestation and potentially the spread of the disease they transmit.

17.
Mol Plant Pathol ; 22(10): 1302-1314, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34275185

RESUMO

Yam (Dioscorea spp.) anthracnose, caused by Colletotrichum alatae, is the most devastating fungal disease of yam in West Africa, leading to 50%-90% of tuber yield losses in severe cases. In some instances, plants die without producing any tubers or each shoot may produce several small tubers before it dies if the disease strikes early. C. alatae affects all parts of the yam plant at all stages of development, including leaves, stems, tubers, and seeds of yams, and it is highly prevalent in the yam belt region and other yam-producing countries in the world. Traditional methods adopted by farmers to control the disease have not been very successful. Fungicides have also failed to provide long-lasting control. Although conventional breeding and genomics-assisted breeding have been used to develop some level of resistance to anthracnose in Dioscorea alata, the appearance of new and more virulent strains makes the development of improved varieties with broad-spectrum and durable resistance critical. These shortcomings, coupled with interspecific incompatibility, dioecy, polyploidy, poor flowering, and the long breeding cycle of the crop, have prompted researchers to explore biotechnological techniques to complement conventional breeding to speed up crop improvement. Modern biotechnological tools have the potential of producing fungus-resistant cultivars, thereby bypassing the natural bottlenecks of traditional breeding. This article reviews the existing biotechnological strategies and proposes several approaches that could be adopted to develop anthracnose-resistant yam varieties for improved food security in West Africa.


Assuntos
Dioscorea , Fungicidas Industriais , Genômica , Folhas de Planta , Tubérculos
18.
Curr Opin Plant Biol ; 56: 118-126, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32604025

RESUMO

Banana production is severely constrained by many pathogens and pests, particularly where a number of them are co-existing. The use of disease-resistant banana varieties is one of the most effective ways to mitigate the negative impacts of pathogens on banana production. Recent advances in new breeding techniques have the potential to accelerate breeding of banana for disease resistance. The CRISPR/Cas9 based genome editing has emerged as the most powerful tool for crop improvement due to its capability of creating precise alterations in plant genome and trait stacking through multiplexing. Recently, the robust CRISPR/Cas9-based genome editing of banana has been established, which can be applied for developing disease-resistant varieties. This article presents a synopsis of recent advancements and perspectives on the application of genome editing for generating disease-resistant banana varieties. It also summarizes the current status of regulatory requirements for the release of genome-edited crop varieties among different countries.


Assuntos
Edição de Genes , Musa , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistência à Doença/genética , Genoma de Planta/genética , Humanos , Musa/genética
19.
Front Plant Sci ; 11: 130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210981

RESUMO

While modern biotechnology and, specifically, genetic modification are subject of debate in many parts of the world, an increasing number of countries in Sub-Sahara Africa are making important strides towards authorizing general releases of genetically modified (GM) crop varieties for use by farmers and agribusinesses. Obviously, the documented economic and environmental benefits from planting GM crops-based on a track record of over two decades-are a major driver in the decision-making process. Another key factor is the increasing alignment of biosafety regulatory policies with progressive agricultural and rural development policies in Africa, resulting in-compared to past experiences-greater emphasis on anticipated benefits rather than risks in biosafety regulatory reviews. In several cases, this has led to expedited reviews of GM crop release applications, either for confined field trials or general environmental release, taking experiences and data from other countries into account. Such regulatory approaches hold promise as the pipeline of relevant, pro-poor GM crop applications is expanding as are the opportunities provided by novel plant breeding techniques. This review article analyses the shifting policy context in select African economies, resulting in adoption of new agricultural technology, and novel regulatory approaches used in biosafety decision-making. Case studies will be presented for Ghana, Kenya, Malawi, Nigeria and Uganda to analyze challenges, distill lessons learned and to present general policy recommendations for emerging economies.

20.
Plants (Basel) ; 9(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599771

RESUMO

Banana and plantain are among the foremost staple food crops providing food and livelihood to over 500 million people in tropical countries. Despite the importance, their production is hampered due to several biotic and abiotic stresses. Plant tissue culture techniques such as somatic embryogenesis and genetic transformation offer a valuable tool for genetic improvement. Identification and quantification of phytochemicals found in banana and plantain are essential in optimizing in vitro activities for crop improvement. Total antioxidants, phenolics, flavonoids, and tannins were quantified in various explants obtained from the field, as well as in vitro plants of banana and plantain cultivars. The result showed genotypic variation in the phytochemicals of selected cultivars. The embryogenic cell suspensions were developed for three farmer-preferred plantain cultivars, Agbagba, Obino l'Ewai, and Orishele, using different MS and B5-based culture media. Both culture media supported the development of friable embryogenic calli (FEC), while MS culture media supported the proliferation of fine cell suspension in liquid culture media. The percentage of FEC generated for Agbagba, Obino l'Ewai, and Orishele were 22 ± 24%, 13 ± 28%, and 9 ± 16%, respectively. Cell suspensions produced from FECs were successfully transformed by Agrobacterium-mediated transformation with reporter gene constructs and regenerated into whole plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA