Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 18(12): e3000948, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284790

RESUMO

Chronic inflammation is now a well-known precursor for cancer development. Infectious prostatitis are the most common causes of prostate inflammation, but emerging evidence points the role of metabolic disorders as a potential source of cancer-related inflammation. Although the widely used treatment for prostate cancer based on androgen deprivation therapy (ADT) effectively decreases tumor size, it also causes profound alterations in immune tumor microenvironment within the prostate. Here, we demonstrate that prostates of a mouse model invalidated for nuclear receptors liver X receptors (LXRs), crucial lipid metabolism and inflammation integrators, respond in an unexpected way to androgen deprivation. Indeed, we observed profound alterations in immune cells composition, which was associated with chronic inflammation of the prostate. This was explained by the recruitment of phagocytosis-deficient macrophages leading to aberrant hyporesponse to castration. This phenotypic alteration was sufficient to allow prostatic neoplasia. Altogether, these data suggest that ADT and inflammation resulting from metabolic alterations interact to promote aberrant proliferation of epithelial prostate cells and development of neoplasia. This raises the question of the benefit of ADT for patients with metabolic disorders.


Assuntos
Imunidade/fisiologia , Receptores X do Fígado/metabolismo , Próstata/metabolismo , Antagonistas de Androgênios/imunologia , Androgênios/metabolismo , Animais , Modelos Animais de Doenças , Imunidade/imunologia , Receptores X do Fígado/genética , Receptores X do Fígado/imunologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neoplasias/etiologia , Neoplasias/imunologia , Neoplasias/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Receptores Citoplasmáticos e Nucleares/metabolismo , Microambiente Tumoral
2.
Inflammopharmacology ; 27(1): 15-25, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30467620

RESUMO

Stress is a reflex response, both psychological and physiological, of the body to a difficult situation that requires adaptation. Stress is at the intersection of the objective event and the subjective event. The physiological mechanisms involved in chronic stress are numerous and can contribute to a wide variety of disorders, in all systems including the immune system. Stress modifies the Th1/Th2 balance via the HPA axis and a set of immune mediators. This will make the body more vulnerable to external infections in a scientific way while others claim the opposite, stress could be considered immune stimulatory. The development of synthetic LXR ligands such as T0901317 and GW3965 as well as an understanding of the direct involvement of these receptors in the regulation of proopiomelanocortin (POMC) gene expression and indirectly by producing a variety of cytokines in a stressor response, will open in the near future new therapeutic methods against the undesirable effects of stress on the behavior of the immune system.


Assuntos
Fatores Imunológicos/imunologia , Receptores X do Fígado/imunologia , Estresse Fisiológico/imunologia , Estresse Psicológico/imunologia , Animais , Citocinas/imunologia , Humanos
3.
Proc Natl Acad Sci U S A ; 112(24): 7587-92, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26023184

RESUMO

The identification of new pathways governing myelination provides innovative avenues for remyelination. Liver X receptors (LXRs) α and ß are nuclear receptors activated by oxysterols that originated from the oxidation of cholesterol. They are crucial for cholesterol homeostasis, a major lipid constituent of myelin sheaths that are formed by oligodendrocytes. However, the role of LXRs in myelin generation and maintenance is poorly understood. Here, we show that LXRs are involved in myelination and remyelination processes. LXRs and their ligands are present in oligodendrocytes. We found that mice invalidated for LXRs exhibit altered motor coordination and spatial learning, thinner myelin sheaths, and reduced myelin gene expression. Conversely, activation of LXRs by either 25-hydroxycholesterol or synthetic TO901317 stimulates myelin gene expression at the promoter, mRNA, and protein levels, directly implicating LXRα/ß in the transcriptional control of myelin gene expression. Interestingly, activation of LXRs also promotes oligodendroglial cell maturation and remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Together, our findings represent a conceptual advance in the transcriptional control of myelin gene expression and strongly support a new role of LXRs as positive modulators in central (re)myelination processes.


Assuntos
Cerebelo/fisiologia , Bainha de Mielina/fisiologia , Receptores Nucleares Órfãos/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Colesterol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Hidrocarbonetos Fluorados/farmacologia , Hidroxicolesteróis/farmacologia , Receptores X do Fígado , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/genética , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Técnicas de Cultura de Órgãos , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/deficiência , Regiões Promotoras Genéticas , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Sulfonamidas/farmacologia
4.
Int J Mol Sci ; 19(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154328

RESUMO

Prostate cancer (PCa) incidence has been dramatically increasing these last years in westernized countries. Though localized PCa is usually treated by radical prostatectomy, androgen deprivation therapy is preferred in locally advanced disease in combination with chemotherapy. Unfortunately, PCa goes into a castration-resistant state in the vast majority of the cases, leading to questions about the molecular mechanisms involving the steroids and their respective nuclear receptors in this relapse. Interestingly, liver X receptors (LXRα/NR1H3 and LXRß/NR1H2) have emerged as new actors in prostate physiology, beyond their historical roles of cholesterol sensors. More importantly LXRs have been proposed to be good pharmacological targets in PCa. This rational has been based on numerous experiments performed in PCa cell lines and genetic animal models pointing out that using selective liver X receptor modulators (SLiMs) could actually be a good complementary therapy in patients with a castration resistant PCa. Hence, this review is focused on the interaction among the androgen receptors (AR/NR3C4), estrogen receptors (ERα/NR3A1 and ERß/NR3A2), and LXRs in prostate homeostasis and their putative pharmacological modulations in parallel to the patients' support.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/metabolismo , Androgênios/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Gerenciamento Clínico , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/efeitos adversos , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Oxisteróis/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
5.
Biol Reprod ; 94(3): 55, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792941

RESUMO

After its production in the testis, a spermatozoon has to undergo posttesticular maturation steps to become fully motile and fertile. The first step is epididymal maturation, during which immature spermatozoa are transformed into biochemically mature cells ready to proceed to the next step, capacitation, a physiological process occurring in the female genital tract. The biochemical transformations include modification of sperm lipid composition during epididymal transit, with significant changes in fatty acids, phospholipids, and sterols between the caput and the cauda epididymal spermatozoa. Although quantitative aspects of these changes are well documented for several mammalian species, molecular mechanisms governing these steps are poorly understood. Transgenic male mice invalidated for the two liver X receptors (LXRalpha and LXRbeta, nuclear oxysterol receptors regulating cholesterol and lipid metabolism) become sterile when aging, showing an epididymal phenotype. We used single-knockout-model mice to characterize the role of each LXR isoform during sperm maturation in the epididymis. We show here that although a certain redundancy exists in the functions of the two LXR isoforms, some physiological processes are more under the influence of only one of them. In both cases, aging males showed slight subfertility, associated with dyslipidemia, emphasizing the importance of lipid metabolism in relation with male fertility.


Assuntos
Epididimo/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores X do Fígado/metabolismo , Envelhecimento , Animais , Colesterol/metabolismo , Epididimo/patologia , Feminino , Homeostase , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Metabolismo dos Lipídeos , Receptores X do Fígado/genética , Masculino , Camundongos , Camundongos Knockout , Gravidez , Taxa de Gravidez , Isoformas de Proteínas
6.
Arterioscler Thromb Vasc Biol ; 35(6): 1357-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25838428

RESUMO

OBJECTIVE: Liver X receptors (LXRs) modulate cholesterol and fatty acid homeostasis as well as inflammation. This study aims to decipher the role of LXRs in the regulation of polyunsaturated fatty acid (PUFA) synthesis in macrophages in the context of atherosclerosis. APPROACH AND RESULTS: Transcriptomic analysis in human monocytes and macrophages was used to identify putative LXR target genes among enzymes involved in PUFA biosynthesis. In parallel, the consequences of LXR activation or LXR invalidation on PUFA synthesis and distribution were determined. Finally, we investigated the impact of LXR activation on PUFA metabolism in vivo in apolipoprotein E-deficient mice. mRNA levels of acyl-CoA synthase long-chain family member 3, fatty acid desaturases 1 and 2, and fatty acid elongase 5 were significantly increased in human macrophages after LXR agonist treatment, involving both direct and sterol responsive element binding protein-1-dependent mechanisms. Subsequently, pharmacological LXR agonist increased long chain PUFA synthesis and enhanced arachidonic acid content in the phospholipids of human macrophages. Increased fatty acid desaturases 1 and 2 and acyl-CoA synthase long-chain family member 3 mRNA levels as well as increased arachidonic acid to linoleic acid and docosahexaenoic acid to eicosapentaenoic acid ratios were also found in atheroma plaque and peritoneal foam cells from LXR agonist-treated mice. By contrast, murine LXR-deficient macrophages displayed reduced expression of fatty acid elongase 5, acyl-CoA synthase long-chain family member 3 and fatty acid desaturases 1, as well as decreased cellular levels of docosahexaenoic acid and arachidonic acid. CONCLUSIONS: Our results indicate that LXR activation triggers PUFA synthesis in macrophages, which results in significant alterations in the macrophage lipid composition. Moreover, we demonstrate here that LXR agonist treatment modulates PUFA metabolism in atherosclerotic arteries.


Assuntos
Aterosclerose/metabolismo , Ácidos Graxos Insaturados/biossíntese , Macrófagos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Animais , Ácido Araquidônico/metabolismo , Artérias/metabolismo , Células Espumosas/metabolismo , Humanos , Receptores X do Fígado , Camundongos , Receptores Nucleares Órfãos/agonistas , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
PLoS Genet ; 9(5): e1003483, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23675307

RESUMO

LXR (Liver X Receptors) act as "sensor" proteins that regulate cholesterol uptake, storage, and efflux. LXR signaling is known to influence proliferation of different cell types including human prostatic carcinoma (PCa) cell lines. This study shows that deletion of LXR in mouse fed a high-cholesterol diet recapitulates initial steps of PCa development. Elevation of circulating cholesterol in Lxrαß-/- double knockout mice results in aberrant cholesterol ester accumulation and prostatic intra-epithelial neoplasia. This phenotype is linked to increased expression of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2), which results in the down-regulation of the tumor suppressors Msmb and Nkx3.1 through increased methylation of lysine 27 of histone H3 (H3K27) on their promoter regions. Altogether, our data provide a novel link between LXR, cholesterol homeostasis, and epigenetic control of tumor suppressor gene expression.


Assuntos
Carcinoma/genética , Colesterol/metabolismo , Neoplasias Experimentais/genética , Receptores Nucleares Órfãos/genética , Neoplasia Prostática Intraepitelial/genética , Neoplasias da Próstata/genética , Animais , Carcinoma/metabolismo , Carcinoma/patologia , Dieta Hiperlipídica , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Receptores X do Fígado , Masculino , Metilação , Camundongos , Camundongos Knockout , Neoplasias Experimentais/patologia , Receptores Nucleares Órfãos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Secretadas pela Próstata/metabolismo , Fatores de Transcrição/metabolismo
8.
Cancers (Basel) ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893271

RESUMO

Epidemiological studies point to cholesterol as a possible key factor for both prostate cancer incidence and progression. It could represent a targetable metabolite as the most aggressive tumors also appear to be sensitive to therapies designed to decrease hypercholesterolemia, such as statins. However, it remains unknown whether and how cholesterol, through its dietary uptake and its metabolism, could be important for early tumorigenesis. Oncogene clonal induction in the Drosophila melanogaster accessory gland allows us to reproduce tumorigenesis from initiation to early progression, where tumor cells undergo basal extrusion to form extra-epithelial tumors. Here we show that these tumors accumulate lipids, and especially esterified cholesterol, as in human late carcinogenesis. Interestingly, a high-cholesterol diet has a limited effect on accessory gland tumorigenesis. On the contrary, cell-specific downregulation of cholesterol uptake, intracellular transport, or metabolic response impairs the formation of such tumors. Furthermore, in this context, a high-cholesterol diet suppresses this impairment. Interestingly, expression data from primary prostate cancer tissues indicate an early signature of redirection from cholesterol de novo synthesis to uptake. Taken together, these results reveal that during early tumorigenesis, tumor cells strongly increase their uptake and use of dietary cholesterol to specifically promote the step of basal extrusion. Hence, these results suggest the mechanism by which a reduction in dietary cholesterol could lower the risk and slow down the progression of prostate cancer.

9.
Oncogene ; 42(38): 2854-2867, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37587334

RESUMO

Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin's lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc-/- mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Poluentes Orgânicos Persistentes , Dioxinas/toxicidade , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Acetiltransferases
10.
J Neurosci ; 31(10): 3729-42, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21389228

RESUMO

Wnt/ß-catenin signaling plays a major role in the development of the nervous system and contributes to neuronal plasticity. However, its role in myelination remains unclear. Here, we identify the Wnt/ß-catenin pathway as an essential driver of myelin gene expression. The selective inhibition of Wnt components by small interfering RNA or dominant-negative forms blocks the expression of myelin protein zero (MPZ) and peripheral myelin protein 22 (PMP22) in mouse Schwann cells and proteolipid protein in mouse oligodendrocytes. Moreover, the activation of Wnt signaling by recombinant Wnt1 ligand increases by threefold the transcription of myelin genes and enhances the binding of ß-catenin to T-cell factor/lymphoid-enhancer factor transcription factors present in the vicinity of the MPZ and PMP22 promoters. Most important, loss-of-function analyses in zebrafish embryos show, in vivo, a key role for Wnt/ß-catenin signaling in the expression of myelin genes and in myelin sheath compaction, both in the peripheral and central nervous systems. Inhibition of Wnt/ß-catenin signaling resulted in hypomyelination, without affecting Schwann cell and oligodendrocyte generation or axonal integrity. The present findings attribute to Wnt/ß-catenin pathway components an essential role in myelin gene expression and myelinogenesis.


Assuntos
Bainha de Mielina/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Análise de Variância , Animais , Linhagem Celular , Células Cultivadas , Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/genética , Peixe-Zebra , beta Catenina/genética
11.
Br J Pharmacol ; 178(16): 3277-3293, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33080050

RESUMO

Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are canonically activated by oxidized derivatives of cholesterol. Since the mid-90s, numerous groups have identified LXRs as endocrine receptors that are involved in the regulation of various physiological functions. As a result, when their expression is genetically modified in mice, phenotypic analyses reveal endocrine disorders ranging from infertility to diabetes and obesity, nervous system pathologies such Alzheimer's or Parkinson's disease, immunological disturbances, inflammatory response, and enhancement of tumour development. Based on such findings, it appears that LXRs could constitute good pharmacological targets to prevent and/or to treat these diseases. This review discusses the various aspects of LXR drug discovery, from the tools available for the screening of potential LXR modulators to the current situational analysis of the drugs in development. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Diabetes Mellitus , Doença de Parkinson , Animais , Colesterol , Receptores X do Fígado , Camundongos , Receptores Citoplasmáticos e Nucleares
12.
Nat Commun ; 11(1): 2300, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385236

RESUMO

One of the most important but less understood step of epithelial tumourigenesis occurs when cells acquire the ability to leave their epithelial compartment. This phenomenon, described as basal epithelial cell extrusion (basal extrusion), represents the first step of tumour invasion. However, due to lack of adequate in vivo model, implication of emblematic signalling pathways such as Ras/Mitogen-Activated Protein Kinase (MAPK) and phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathways, is scarcely described in this phenomenon. We have developed a unique model of basal extrusion in the Drosophila accessory gland. There, we demonstrate that both Ras/MAPK and PI3K/AKT/mTOR pathways are necessary for basal extrusion. Furthermore, as in prostate cancer, we show that these pathways are co-activated. This occurs through set up of Epidermal Growth Factor Receptor (EGFR) and Insulin Receptor (InR) dependent autocrine loops, a phenomenon that, considering human data, could be relevant for prostate cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Drosophila , Glândulas Exócrinas/metabolismo , Masculino , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia
13.
J Neurochem ; 109(4): 945-58, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19250336

RESUMO

In several neurodegenerative diseases of the CNS, oligodendrocytes are implicated in an inflammatory process associated with altered levels of oxysterols and inflammatory enzymes such as secreted phospholipase A2 (sPLA2). In view of the scarce literature related to this topic, we investigated oxysterol effects on these myelinating glial cells. Natural oxysterol 25-hydroxycholesterol (25-OH; 1 and 10 microM) altered oligodendrocyte cell line (158N) morphology and triggered apoptosis (75% of apoptosis after 72 h). These effects were mimicked by 22(S)-OH (1 and 10 microM) which does not activate liver X receptor (LXR) but not by a synthetic LXR ligand (T0901317). Therefore, oxysterol-induced apoptosis appears to be independent of LXR. Interestingly, sPLA2 type IIA (sPLA2-IIA) over-expression partially rescued 158N cells from oxysterol-induced apoptosis. In fact, 25-OH, 24(S)-OH, and T0901317 stimulated sPLA2-IIA promoter and sPLA2 activity in oligodendrocyte cell line. Accordingly, administration of T0901317 to mice enhanced sPLA2 activity in brain extracts by twofold. Short interfering RNA strategy allowed to establish that stimulation of sPLA2-IIA is mediated by pregnane X receptor (PXR) at high oxysterol concentration (10 microM) and by LXR beta at basal oxysterol concentration. Finally, GC coupled to mass spectrometry established that oligodendrocytes contain oxysterols and express their biosynthetic enzymes, suggesting that they may act through autocrine/paracrine mechanism. Our results show the diversity of oxysterol signalling in the CNS and highlight the positive effects of the LXR/PXR pathway which may open new perspectives in the treatment of demyelinating and neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos dos fármacos , Fosfolipases A2 do Grupo II/metabolismo , Hidroxicolesteróis/farmacologia , Oligodendroglia/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores de Esteroides/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Fluorados/farmacologia , Hidroxicolesteróis/antagonistas & inibidores , Hidroxicolesteróis/toxicidade , Receptores X do Fígado , Camundongos , Microscopia de Força Atômica , Oligodendroglia/ultraestrutura , Receptores Nucleares Órfãos , Receptor de Pregnano X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Transfecção
14.
J Steroid Biochem Mol Biol ; 190: 173-182, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959154

RESUMO

Liver X receptors (LXRs) α (NR1H3) and ß (NR1H2) are nuclear receptors that have been involved in the regulation of many physiological processes, principally in the control of cholesterol homeostasis, as well as in the control of the cell death and proliferation balance. These receptors are thus promising therapeutic targets in various pathologies such as dyslipidemia, atherosclerosis, diabetes and/or cancers. These receptors are known to be activated by specific oxysterol compounds. The screening for LXR-specific ligands is a challenging process: indeed, these molecules should present a specificity towards each LXR-isoform. Because some natural products have significant effects in the regulation of the LXR-regulated homeostasis and are enriched in flavonoids, we have decided to test in cell culture the effects of 4 selected flavonoids (galangin, quercetin, apigenin and naringenin) on the modulation of LXR activity using double-hybrid experiments. In silico, molecular docking suggests specific binding pattern between agonistic and antagonistic molecules. Altogether, these results allow a better understanding of the ligand binding pocket of LXRα/ß. They also improve our knowledge about flavonoid mechanism of action, allowing the selection and development of better LXR selective ligands.


Assuntos
Flavonoides/farmacologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/antagonistas & inibidores , Apigenina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Flavanonas/farmacologia , Células HeLa , Humanos , Receptores X do Fígado/metabolismo , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Relação Estrutura-Atividade
15.
J Steroid Biochem Mol Biol ; 189: 108-115, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30831197

RESUMO

Antiandrogens have a peculiar place in the treatment of metastatic prostate cancer by blocking the androgen receptor (AR). Unfortunately, aggressive tumors could rapidly develop into a castration resistant state. It is therefore essential to look for new molecules that are more effective, affecting not only the androgen signaling and with minimum undesirable effects. Natural products are an interesting source of new therapeutics, especially for cancer therapy as 70% of them have botanical origin. Based on an ethnobotany screening, we evaluated the effects of ethanolic extract of propolis (EEP) from Algeria on LNCaP cells. Results pointed out that EEP reduces the survival of LNCaP cells with an IC50 of 0.04 mg/ml, induces the apoptosis and blocks the cell cycle at G0/G1 phase. Interestingly, EEP decreased the accumulation of AR suggesting some anti-androgen activity. Indeed, secreted amount of the androgen target protein PSA was decreased when LNCaP cells were incubated with EEP, starting after 4 h of treatment. This anti-androgen activity was also shown on the androgen target genes Fkbp5 and Sgk1. Finally, the capacity of EEP to block AR functioning was demonstrated in transient transfections with human AR and the reporter gene ARE-tk-Luc. Propolis antagonizes the induction of the luciferase activity induced by the natural androgen DHT (10-8M) or the synthetic AR agonist R1881 (10-7M). Altogether, these results highlight the potential pharmacological effects of EEP in future treatments of prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Própole/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/genética , Antagonistas de Androgênios/farmacologia , Animais , Apoptose/efeitos dos fármacos , Abelhas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ativação Transcricional/efeitos dos fármacos
16.
Eur Urol Oncol ; 2(2): 198-206, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31017097

RESUMO

BACKGROUND: Deregulation of cholesterol metabolism represents a hallmark of prostate cancer (PCa) and promotes its development. OBJECTIVE: To compare cholesterol metabolism on individual paired normal and tumour prostate tissues obtained from patients with PCa. DESIGN, SETTING, AND PARTICIPANTS: Between 2008 and 2012, normal and tumour paired tissue samples were collected from radical prostatectomy specimens from a cohort of 69 patients treated for localised PCa. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Tumour and normal tissues were subjected to gene analysis, sterol measurement, and immunohistochemistry. The Wilcoxon paired test and Spearman test were applied for comparison and correlation analyses, respectively. Principal component analysis was also carried out to investigate relationships between quantitative variables. RESULTS AND LIMITATIONS: Overall, cholesterol concentrations were not significantly different between tissue pairs. However, tumour samples were significantly associated with downregulated de novo cholesterol synthesis, but exhibited 54.7% overexpression of SCARB1 that could increase high-density lipoprotein uptake in PCa. Tumour tissues showed different trafficking of available cholesterol, with significantly lower ACAT1, and an altered efflux via APOE. Furthermore, cholesterol metabolism in tumour tissues was characterised by higher accumulation of 7α-hydroxycholesterol (OHC), 7ßOHC, and 7-ketosterol, and a lower level of 27OHC. CONCLUSIONS: Focusing on individually paired prostate tissues, our results highlighted several differences between normal and tumour samples linked to a metabolic shift in cholesterol flux. PCa samples exhibited a specific tissue signature characterised by higher SCARB1 expression, higher accumulation of OHC species, and clear downregulation of de novo cholesterol synthesis. PATIENT SUMMARY: Comparing normal and tumour tissues from the same prostates, our study identified a set of alterations in prostate cancer samples in terms of their use of cholesterol. These included higher cholesterol uptake, accumulation of oxidised cholesterol derivatives, and autonomous cellular production of cholesterol. Together, these data provide promising clinical targets to fight prostate cancer.


Assuntos
Colesterol/metabolismo , Redes Reguladoras de Genes , Neoplasias da Próstata/cirurgia , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Idoso , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
17.
J Steroid Biochem Mol Biol ; 104(3-5): 220-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17475479

RESUMO

In the nervous system, glucocorticoid hormones play a major role during development, and they continue to affect functional and structural plasticity throughout life. Glucocorticoid actions are mediated by their cognate nuclear receptor, the glucocorticoid receptor (GR). The transcriptional activity of the GR is enhanced by the recruitment of one of the transcriptional coactivators of the p160 family (SRCs), which are a docking platform for secondary coactivators like CBP, or its close homologue p300. Here, we investigated the implication of CBP and p300 coactivators in glial cells of the central and peripheral nervous system, namely in primary cultures of astrocytes and in Schwann cells. We show that both coregulators behave differently in either cell type. CBP enhances GR transcriptional activation in astrocytes, and has no effect in Schwann cells, whereas p300 exerts an inhibitory effect in both glial cells. Studies with p300 deletion mutants show that the repressive capacity of p300 is related to its acetyltransferase activity. This work shows striking differences between CBP and p300 actions in astrocytes. Moreover, in astrocytes the opposite effects of CBP and p300 could lead to a balance in the transactivation potency of the GR, in order to fine tune the action of glucocorticoids.


Assuntos
Astrócitos/metabolismo , Proteína p300 Associada a E1A/fisiologia , Proteínas de Membrana/fisiologia , Fosfoproteínas/fisiologia , Receptores de Glucocorticoides/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteína p300 Associada a E1A/genética , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Modelos Biológicos , Fosfoproteínas/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Transfecção
18.
J Steroid Biochem Mol Biol ; 104(3-5): 305-11, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17481888

RESUMO

In the nervous system, glucocorticoids exert beneficial or noxious effects, depending on their concentration and time-exposure. They act via the glucocorticoid receptor (GR) which recruits the p160 coactivators (SRC-1, SRC-2 and SRC-3). It was often shown that the three SRCs are interchangeable. The aim of the present study was to evaluate if the GR-SRCs interactions are dependent on several parameters like the target promoter structure, cell type or exogenous stressful parameters like hypoxia. We investigated the GR-SRCs interactions in two glial cells: astrocytes for the central nervous system and Schwann cells for the peripheral nervous system. We have shown by performing functional studies (overexpression and siRNA knock-down) that the recruitment of the three p160 by the GR is promoter-dependent and cell-specific. Moreover, we have shown that hypoxia (5% of oxygen) enhanced GR transactivation in both glial cells. Although hypoxia enhanced GR transactivation, it did not alter the interactions between the GR and the three p160s. Finally, we have shown that the potentiation of GR transactivation by hypoxia is due to an increase of the GR transcripts in Schwann cells but not in astrocytes. Altogether, these results reveal that the p160s are not interchangeable and that their recruitment by the GR is a multiparametric event.


Assuntos
Histona Acetiltransferases/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Especificidade de Órgãos , Oxigênio/farmacologia , Regiões Promotoras Genéticas/fisiologia , Receptores de Glucocorticoides/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Astrócitos/metabolismo , Hipóxia Celular/fisiologia , Células Cultivadas , Coativador 1 de Receptor Nuclear , Coativador 3 de Receptor Nuclear , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Ativação Transcricional/efeitos dos fármacos
19.
Mol Endocrinol ; 20(2): 254-67, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16179382

RESUMO

In the nervous system, glucocorticoids can exert beneficial or noxious effects, depending on their concentration and the duration of hormonal stimulation. They exert their effects on neuronal and glial cells by means of their cognate receptor, the glucocorticoid receptor (GR), which recruits the p160 coactivator family members SRC-1 (steroid receptor coactivator 1), SRC-2, and SRC-3 after hormone binding. In this study, we investigated the molecular pathways used by the GR in cultured glial cells of the central and the peripheral nervous systems, astrocytes and Schwann cells (MSC80 cells), respectively. We performed functional studies based on transient transfection of a minimal glucocorticoid-sensitive reporter gene into the glial cells to test the influence of overexpression or selective inhibition by short interfering RNA of the three p160 coactivator family members on GR transactivation. We demonstrate that, depending on the glial cell type, GR differentially recruits p160 family members: in Schwann cells, GR recruited SRC-1a, SRC-1e, or SRC-3, whereas in astrocytes, SRC-1e and SRC-2, and to a lesser extent SRC-3, were active toward GR signaling. The C-terminal nuclear receptor-interacting domain of SRC-1a participates in its exclusion from the GR transcriptional complex in astrocytes. Immunolocalization experiments revealed a cell-specific intracellular distribution of the p160s, which was dependent on the duration of the hormonal induction. For example, within astrocytes, SRC-1 and SRC-2 were mainly nuclear, whereas SRC-3 unexpectedly localized to the lumen of the Golgi apparatus. In contrast, in Schwann cells, SRC-1 showed a nucleocytoplasmic shuttling depending on hormonal stimulation, whereas SRC-2 remained strictly nuclear and SRC-3 remained predominantly cytoplasmic. Altogether, these results highlight the cell specificity and the time dependence of p160s recruitment by the activated GR in glial cells, revealing the complexity of GR-p160 assembly in the nervous system.


Assuntos
Astrócitos/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Receptores de Glucocorticoides/metabolismo , Células de Schwann/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Astrócitos/química , Núcleo Celular/química , Citoplasma/química , Genes Reporter , Histona Acetiltransferases , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Coativador 1 de Receptor Nuclear , Coativador 2 de Receptor Nuclear/análise , Coativador 2 de Receptor Nuclear/antagonistas & inibidores , Coativador 3 de Receptor Nuclear , Proteína 1 de Interação com Receptor Nuclear , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/genética , Células de Schwann/química , Transativadores/análise , Transativadores/antagonistas & inibidores , Fatores de Transcrição/análise , Fatores de Transcrição/antagonistas & inibidores , Ativação Transcricional
20.
Chem Phys Lipids ; 207(Pt B): 59-68, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28259649

RESUMO

Liver X receptors (LXRs) are members of the nuclear receptor superfamily that have been shown to regulate various physiological functions such as lipid metabolism and cholesterol homeostasis. Concordant reports have elicited the possibility to target them to cure many human diseases including arteriosclerosis, cancer, arthritis, and diabetes. The high relevance of modulating LXR activities to treat numerous skin diseases, mainly those with exacerbated inflammation processes, contrasts with the lack of approved therapeutic use. This review makes an assessment to sum up the findings regarding the physiological roles of LXRs in skin and help progress towards the therapeutic and safe management of their activities. It focuses on the possible pharmacological targeting of LXRs to cure or prevent selected skin diseases.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Receptores X do Fígado/metabolismo , Neoplasias/tratamento farmacológico , Pele/efeitos dos fármacos , Artrite Reumatoide/metabolismo , Aterosclerose/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Ligantes , Receptores X do Fígado/química , Neoplasias/metabolismo , Pele/metabolismo , Fenômenos Fisiológicos da Pele/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA