Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 200-209.e12, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086091

RESUMO

Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PAPERCLIP.


Assuntos
Bacillus subtilis/fisiologia , Biofilmes , Fenômenos Eletrofisiológicos , Pseudomonas aeruginosa/fisiologia , Biofilmes/classificação , Potenciais da Membrana , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Potássio/metabolismo
2.
J Biol Chem ; 299(10): 105230, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689116

RESUMO

Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.


Assuntos
Quimiocina CXCL10 , Quimiocina CXCL9 , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon , Macrófagos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Macrófagos/metabolismo , Transdução de Sinais/genética , Células RAW 264.7 , Animais , Camundongos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Simulação por Computador , Análise de Célula Única , Adjuvantes Imunológicos/farmacologia
3.
Biophys J ; 121(21): 4137-4152, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168291

RESUMO

Cellular responses to the presence of toxic compounds in their environment require prompt expression of the correct levels of the appropriate enzymes, which are typically regulated by transcription factors that control gene expression for the duration of the response. The characteristics of each response dictate the choice of regulatory parameters such as the affinity of the transcription factor to its binding sites and the strength of the promoters it regulates. Although much is known about the dynamics of cellular responses, we still lack a framework to understand how different regulatory strategies evolved in natural systems relate to the selective pressures acting in each particular case. Here, we analyze a dynamical model of a typical antibiotic response in bacteria, where a transcriptionally repressed enzyme is induced by a sudden exposure to the drug that it processes. We identify strategies of gene regulation that optimize this response for different types of selective pressures, which we define as a set of costs associated with the drug, enzyme, and repressor concentrations during the response. We find that regulation happens in a limited region of the regulatory parameter space. While responses to more costly (toxic) drugs favor the usage of strongly self-regulated repressors, responses where expression of enzyme is more costly favor the usage of constitutively expressed repressors. Only a very narrow range of selective pressures favor weakly self-regulated repressors. We use this framework to determine which costs and benefits are most critical for the evolution of a variety of natural cellular responses that satisfy the approximations in our model and to analyze how regulation is optimized in new environments with different demands.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Regiões Promotoras Genéticas , Bactérias/genética , Regulação Bacteriana da Expressão Gênica
4.
Nature ; 536(7614): 81-85, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27437587

RESUMO

The widespread view of bacteria as strictly pathogenic has given way to an appreciation of the prevalence of some beneficial microbes within the human body. It is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ. Here we engineer a clinically relevant bacterium to lyse synchronously ata threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We used microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug delivery platform via co-culture with human cancer cells in vitro. Asa proof of principle, we tracked the bacterial population dynamics in ectopic syngeneic colorectal tumours in mice via a luminescent reporter. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies, we orally administered the lysis strain alone or in combination with a clinical chemotherapeutic to a syngeneic mouse transplantation model of hepatic colorectal metastases. We found that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumour activity along with a marked survival benefit over either therapy alone.Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites.


Assuntos
Bacteriólise , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Sistemas de Liberação de Medicamentos/métodos , Salmonella/metabolismo , Administração Oral , Animais , Técnicas de Cocultura , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Simulação por Computador , Feminino , Neoplasias Hepáticas/secundário , Luminescência , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Percepção de Quorum , Salmonella/genética , Biologia Sintética/métodos , Transplante Isogênico
5.
Phys Rev Lett ; 125(14): 149901, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064509

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.118.028102.

6.
Nature ; 508(7496): 387-91, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24717442

RESUMO

One promise of synthetic biology is the creation of genetic circuitry that enables the execution of logical programming in living cells. Such 'wet programming' is positioned to transform a wide and diverse swathe of biotechnology ranging from therapeutics and diagnostics to water treatment strategies. Although progress in the development of a library of genetic modules continues apace, a major challenge for their integration into larger circuits is the generation of sufficiently fast and precise communication between modules. An attractive approach is to integrate engineered circuits with host processes that facilitate robust cellular signalling. In this context, recent studies have demonstrated that bacterial protein degradation can trigger a precise response to stress by overloading a limited supply of intracellular proteases. Here we use protease competition to engineer rapid and tunable coupling of genetic circuits across multiple spatial and temporal scales. We characterize coupling delay times that are more than an order of magnitude faster than standard transcription-factor-based coupling methods (less than 1 min compared with ∼20-40 min) and demonstrate tunability through manipulation of the linker between the protein and its degradation tag. We use this mechanism as a platform to couple genetic clocks at the intracellular and colony level, then synchronize the multi-colony dynamics to reduce variability in both clocks. We show how the coupled clock network can be used to encode independent environmental inputs into a single time series output, thus enabling frequency multiplexing (information transmitted on a common channel by distinct frequencies) in a genetic circuit context. Our results establish a general framework for the rapid and tunable coupling of genetic circuits through the use of native 'queueing' processes such as competitive protein degradation.


Assuntos
Redes Reguladoras de Genes , Biossíntese de Proteínas , Proteólise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Relógios Biológicos/genética , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Biologia Sintética , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 114(42): 11253-11258, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29073021

RESUMO

Cellular aging plays an important role in many diseases, such as cancers, metabolic syndromes, and neurodegenerative disorders. There has been steady progress in identifying aging-related factors such as reactive oxygen species and genomic instability, yet an emerging challenge is to reconcile the contributions of these factors with the fact that genetically identical cells can age at significantly different rates. Such complexity requires single-cell analyses designed to unravel the interplay of aging dynamics and cell-to-cell variability. Here we use microfluidic technologies to track the replicative aging of single yeast cells and reveal that the temporal patterns of heterochromatin silencing loss regulate cellular life span. We found that cells show sporadic waves of silencing loss in the heterochromatic ribosomal DNA during the early phases of aging, followed by sustained loss of silencing preceding cell death. Isogenic cells have different lengths of the early intermittent silencing phase that largely determine their final life spans. Combining computational modeling and experimental approaches, we found that the intermittent silencing dynamics is important for longevity and is dependent on the conserved Sir2 deacetylase, whereas either sustained silencing or sustained loss of silencing shortens life span. These findings reveal that the temporal patterns of a key molecular process can directly influence cellular aging, and thus could provide guidance for the design of temporally controlled strategies to extend life span.


Assuntos
Senescência Celular , Heterocromatina/fisiologia , Microfluídica , Modelos Biológicos , Saccharomyces cerevisiae , Análise de Célula Única
8.
Biophys J ; 114(7): 1741-1750, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642042

RESUMO

Multistrain microbial communities often exhibit complex spatial organization that emerges because of the interplay of various cooperative and competitive interaction mechanisms. One strong competitive mechanism is contact-dependent neighbor killing enabled by the type VI secretion system. It has been previously shown that contact-dependent killing can result in bistability of bacterial mixtures so that only one strain survives and displaces the other. However, it remains unclear whether stable coexistence is possible in such mixtures. Using a population dynamics model for two interacting bacterial strains, we found that coexistence can be made possible by the interplay of contact-dependent killing and long-range growth inhibition, leading to the formation of various cellular patterns. These patterns emerge in a much broader parameter range than that required for the linear Turing-like instability, suggesting this may be a robust mechanism for pattern formation.


Assuntos
Viabilidade Microbiana , Modelos Biológicos , Processos Estocásticos
9.
J Biol Chem ; 292(30): 12366-12372, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28637875

RESUMO

Information about environmental stimuli often can be encoded by the dynamics of signaling molecules or transcription factors. In the yeast Saccharomyces cerevisiae, different types of stresses induce distinct nuclear translocation dynamics of the general stress-responsive transcription factor Msn2, but the underlying mechanisms remain unclear. Using deterministic and stochastic modeling, we reproduced in silico the different dynamic responses of Msn2 to glucose limitation and osmotic stress observed in vivo and found that a positive feedback loop on protein kinase A mediated by the AMP-activated protein kinase Snf1 is coupled with a negative feedback loop to generate the characteristic pulsatile dynamics of Msn2. The model predicted that the stimulus-specific positive feedback loop could be responsible for the difference between Msn2 dynamics induced by glucose limitation and osmotic stress. This prediction was further verified experimentally by time-lapse microscopic examinations of the snf1Δ strain. In this mutant lacking the Snf1-mediated positive feedback loop, Msn2 responds similarly to glucose limitation and osmotic stress, and its pulsatile translocation is largely abrogated. Our combined computational and experimental analysis reveals a regulatory mechanism by which cells can encode information about environmental cues into distinct signaling dynamics through stimulus-specific network architectures.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(27): 8187-92, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100914

RESUMO

Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Membranas Artificiais , Fosfolipídeos/química , Catálise , Membrana Celular/metabolismo , Cobre/química , Cobre/metabolismo , Reação de Cicloadição , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/síntese química , Lipídeos de Membrana/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Fosfatidilcolinas/síntese química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipídeos/biossíntese , Fosfolipídeos/síntese química , Imagem com Lapso de Tempo , Triazóis/síntese química , Triazóis/química , Triazóis/metabolismo , Lipossomas Unilamelares/química
11.
Phys Rev Lett ; 118(2): 028102, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28128631

RESUMO

Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.


Assuntos
Bactérias/genética , Modelos Genéticos , Mutação , Evolução Molecular
12.
Nature ; 481(7379): 39-44, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22178928

RESUMO

Although there has been considerable progress in the development of engineering principles for synthetic biology, a substantial challenge is the construction of robust circuits in a noisy cellular environment. Such an environment leads to considerable intercellular variability in circuit behaviour, which can hinder functionality at the colony level. Here we engineer the synchronization of thousands of oscillating colony 'biopixels' over centimetre-length scales through the use of synergistic intercellular coupling involving quorum sensing within a colony and gas-phase redox signalling between colonies. We use this platform to construct a liquid crystal display (LCD)-like macroscopic clock that can be used to sense arsenic via modulation of the oscillatory period. Given the repertoire of sensing capabilities of bacteria such as Escherichia coli, the ability to coordinate their behaviour over large length scales sets the stage for the construction of low cost genetic biosensors that are capable of detecting heavy metals and pathogens in the field.


Assuntos
Arsênio/análise , Técnicas Biossensoriais , Escherichia coli/genética , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Ampicilina/farmacologia , Antibacterianos , Proteínas de Bactérias/metabolismo , Relógios Biológicos/efeitos dos fármacos , Catalase/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Peróxido de Hidrogênio/metabolismo , Canamicina/farmacologia , Cristais Líquidos , NADH Desidrogenase/metabolismo , Oxirredução , Percepção de Quorum , Superóxido Dismutase/metabolismo , Biologia Sintética , Tioureia/farmacologia
13.
Nucleic Acids Res ; 43(2): 699-707, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25541195

RESUMO

When messenger RNA splicing occurs co-transcriptionally, the potential for kinetic control based on transcription dynamics is widely recognized. Indeed, perturbation studies have reported that when transcription kinetics are perturbed genetically or pharmacologically splice patterns may change. However, whether kinetic control is contributing to the control of splicing within the normal range of physiological conditions remains unknown. We examined if the kinetic determinants for co-transcriptional splicing (CTS) might be reflected in the structure and expression patterns of the genome and epigenome. To identify and then quantitatively relate multiple, simultaneous CTS determinants, we constructed a scalable mathematical model of the kinetic interplay of RNA synthesis and CTS and parameterized it with diverse next generation sequencing (NGS) data. We thus found a variety of CTS determinants encoded in vertebrate genomes and epigenomes, and that these combine variously for different groups of genes such as housekeeping versus regulated genes. Together, our findings indicate that the kinetic basis of splicing is functionally and physiologically relevant, and may meaningfully inform the analysis of genomic and epigenomic data to provide insights that are missed when relying on statistical approaches alone.


Assuntos
Modelos Genéticos , Splicing de RNA , Transcrição Gênica , Animais , Simulação por Computador , Epigênese Genética , Genes Essenciais , Genômica , Humanos , Cinética , Camundongos , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Análise de Sequência de RNA
14.
Biophys J ; 111(5): 1078-87, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27602735

RESUMO

The contrast between the stochasticity of biochemical networks and the regularity of cellular behavior suggests that biological networks generate robust behavior from noisy constituents. Identifying the mechanisms that confer this ability on biological networks is essential to understanding cells. Here we show that queueing for a limited shared resource in broad classes of enzymatic networks in certain conditions leads to a critical state characterized by strong and long-ranged correlations between molecular species. An enzymatic network reaches this critical state when the input flux of its substrate is balanced by the maximum processing capacity of the network. We then consider enzymatic networks with adaptation, when the limiting resource (enzyme or cofactor) is produced in proportion to the demand for it. We show that the critical state becomes an attractor for these networks, which points toward the onset of self-organized criticality. We suggest that the adaptive queueing motif that leads to significant correlations between multiple species may be widespread in biological systems.


Assuntos
Enzimas/metabolismo , Modelos Moleculares , Algoritmos , Simulação por Computador , Enzimas/química , Processos Estocásticos
15.
Nature ; 463(7279): 326-30, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20090747

RESUMO

The engineering of genetic circuits with predictive functionality in living cells represents a defining focus of the expanding field of synthetic biology. This focus was elegantly set in motion a decade ago with the design and construction of a genetic toggle switch and an oscillator, with subsequent highlights that have included circuits capable of pattern generation, noise shaping, edge detection and event counting. Here we describe an engineered gene network with global intercellular coupling that is capable of generating synchronized oscillations in a growing population of cells. Using microfluidic devices tailored for cellular populations at differing length scales, we investigate the collective synchronization properties along with spatiotemporal waves occurring at millimetre scales. We use computational modelling to describe quantitatively the observed dependence of the period and amplitude of the bulk oscillations on the flow rate. The synchronized genetic clock sets the stage for the use of microbes in the creation of a macroscopic biosensor with an oscillatory output. Furthermore, it provides a specific model system for the generation of a mechanistic description of emergent coordinated behaviour at the colony level.


Assuntos
Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Escherichia coli/citologia , Escherichia coli/genética , Engenharia Genética , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Escherichia coli/fisiologia , Retroalimentação Fisiológica , Fluorescência , Microfluídica , Microscopia de Fluorescência , Modelos Biológicos , Periodicidade , Fatores de Tempo
16.
Physica D ; 318-319: 116-123, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955203

RESUMO

We propose and study models of two distributed synthetic gene circuits, toggle-switch and oscillator, each split between two cell strains and coupled via quorum-sensing signals. The distributed toggle switch relies on mutual repression of the two strains, and oscillator is comprised of two strains, one of which acts as an activator for another that in turn acts as a repressor. Distributed toggle switch can exhibit mobile fronts, switching the system from the weaker to the stronger spatially homogeneous state. The circuit can also act as a biosensor, with the switching front dynamics determined by the properties of an external signal. Distributed oscillator system displays another biosensor functionality: oscillations emerge once a small amount of one cell strain appears amid the other, present in abundance. Distribution of synthetic gene circuits among multiple strains allows one to reduce crosstalk among different parts of the overall system and also decrease the energetic burden of the synthetic circuit per cell, which may allow for enhanced functionality and viability of engineered cells.

17.
Rep Prog Phys ; 77(2): 026601, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444693

RESUMO

Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling.


Assuntos
Biologia/métodos , Animais , Humanos , Modelos Biológicos , Processos Estocásticos
18.
Phys Rev Lett ; 113(12): 128102, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25279645

RESUMO

The development of synthetic gene oscillators has not only demonstrated our ability to forward engineer reliable circuits in living cells, but it has also proven to be an excellent testing ground for the statistical behavior of coupled noisy oscillators. Previous experimental studies demonstrated that a shared positive feedback can reliably synchronize such oscillators, though the theoretical mechanism was not studied in detail. In the present work, we examine an experimentally motivated stochastic model for coupled degrade-and-fire gene oscillators, where a core delayed negative feedback establishes oscillations within each cell, and a shared delayed positive feedback couples all cells. We use analytic and numerical techniques to investigate conditions for one cluster and multicluster synchrony. A nonzero delay in the shared positive feedback, as expected for the experimental systems, is found to be important for synchrony to occur.


Assuntos
Relógios Biológicos/genética , Genes Sintéticos , Modelos Genéticos , Retroalimentação Fisiológica , Processos Estocásticos
19.
PLoS Comput Biol ; 9(6): e1003112, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825938

RESUMO

Many cellular stress-responsive signaling systems exhibit highly dynamic behavior with oscillatory features mediated by delayed negative feedback loops. What remains unclear is whether oscillatory behavior is the basis for a signaling code based on frequency modulation (FM) or whether the negative feedback control modules have evolved to fulfill other functional requirements. Here, we use experimentally calibrated computational models to interrogate the negative feedback loops that regulate the dynamic activity of the transcription factor NF-κB. Linear stability analysis of the model shows that oscillatory frequency is a hard-wired feature of the primary negative feedback loop and not a function of the stimulus, thus arguing against an FM signaling code. Instead, our modeling studies suggest that the two feedback loops may be tuned to provide for rapid activation and inactivation capabilities for transient input signals of a wide range of durations; by minimizing late phase oscillations response durations may be fine-tuned in a graded rather than quantized manner. Further, in the presence of molecular noise the dual delayed negative feedback system minimizes stochastic excursions of the output to produce a robust NF-κB response.


Assuntos
Retroalimentação , NF-kappa B/metabolismo , Transdução de Sinais , Simulação por Computador
20.
Nature ; 456(7221): 516-9, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18971928

RESUMO

One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to 'design specifications' generated from computational modelling. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behaviour. Several fundamental gene circuits have been developed using this approach, including toggle switches and oscillators, and these have been applied in new contexts such as triggered biofilm development and cellular population control. Here we describe an engineered genetic oscillator in Escherichia coli that is fast, robust and persistent, with tunable oscillatory periods as fast as 13 min. The oscillator was designed using a previously modelled network architecture comprising linked positive and negative feedback loops. Using a microfluidic platform tailored for single-cell microscopy, we precisely control environmental conditions and monitor oscillations in individual cells through multiple cycles. Experiments reveal remarkable robustness and persistence of oscillations in the designed circuit; almost every cell exhibited large-amplitude fluorescence oscillations throughout observation runs. The oscillatory period can be tuned by altering inducer levels, temperature and the media source. Computational modelling demonstrates that the key design principle for constructing a robust oscillator is a time delay in the negative feedback loop, which can mechanistically arise from the cascade of cellular processes involved in forming a functional transcription factor. The positive feedback loop increases the robustness of the oscillations and allows for greater tunability. Examination of our refined model suggested the existence of a simplified oscillator design without positive feedback, and we construct an oscillator strain confirming this computational prediction.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes/genética , Genes Sintéticos/genética , Engenharia Genética , Periodicidade , Simulação por Computador , Retroalimentação , Citometria de Fluxo , Medições Luminescentes , Técnicas Analíticas Microfluídicas , Modelos Genéticos , Sensibilidade e Especificidade , Fatores de Tempo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA