Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 10(7): e1004481, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010424

RESUMO

Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the ß-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas dos Microfilamentos/genética , Neurogênese/genética , beta Catenina/genética , Animais , Animais Geneticamente Modificados , Axônios , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mutação , Neurônios/citologia , Neurônios/metabolismo , beta Catenina/metabolismo
2.
PLoS Genet ; 10(5): e1004297, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810406

RESUMO

The Pam/Highwire/RPM-1 (PHR) proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK). Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1), also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2) as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S). Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Neurogênese , Monoéster Fosfórico Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Axônios , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Ácido Mirístico/metabolismo , Ligação Proteica
3.
J Neurosci ; 32(8): 2628-36, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22357847

RESUMO

Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.


Assuntos
Axônios/fisiologia , Mecanorreceptores/citologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Sinapses/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Espectrometria de Massas , Microscopia Confocal , Dados de Sequência Molecular , Mutação/genética , Proteínas Associadas à Matriz Nuclear/deficiência , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/deficiência , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica/genética , Transdução de Sinais/genética , Sinapses/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
4.
Cell Rep ; 19(4): 822-835, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445732

RESUMO

Genetic changes in the HECT ubiquitin ligase HUWE1 are associated with intellectual disability, but it remains unknown whether HUWE1 functions in post-mitotic neurons to affect circuit function. Using genetics, pharmacology, and electrophysiology, we show that EEL-1, the HUWE1 ortholog in C. elegans, preferentially regulates GABAergic presynaptic transmission. Decreasing or increasing EEL-1 function alters GABAergic transmission and the excitatory/inhibitory (E/I) balance in the worm motor circuit, which leads to impaired locomotion and increased sensitivity to electroshock. Furthermore, multiple mutations associated with intellectual disability impair EEL-1 function. Although synaptic transmission defects did not result from abnormal synapse formation, sensitizing genetic backgrounds revealed that EEL-1 functions in the same pathway as the RING family ubiquitin ligase RPM-1 to regulate synapse formation and axon termination. These findings from a simple model circuit provide insight into the molecular mechanisms required to obtain E/I balance and could have implications for the link between HUWE1 and intellectual disability.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios GABAérgicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldicarb/toxicidade , Animais , Animais Geneticamente Modificados/metabolismo , Axônios/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Eletrochoque , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipersensibilidade/etiologia , Locomoção/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Terminações Pré-Sinápticas/metabolismo , Interferência de RNA , Transdução de Sinais , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
5.
6.
Genetics ; 189(4): 1297-307, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21968191

RESUMO

The PHR (Pam/Highwire/RPM-1) proteins are evolutionarily conserved ubiquitin ligases that regulate axon guidance and synapse formation in Caenorhabditis elegans, Drosophila, zebrafish, and mice. In C. elegans, RPM-1 (Regulator of Presynaptic Morphology-1) functions in synapse formation, axon guidance, axon termination, and postsynaptic GLR-1 trafficking. Acting as an E3 ubiquitin ligase, RPM-1 negatively regulates a MAP kinase pathway that includes: dlk-1, mkk-4, and the p38 MAPK, pmk-3. Here we provide evidence that ppm-1, a serine/threonine phosphatase homologous to human PP2Cα(PPM1A) and PP2Cß(PPM1B) acts as a second negative regulatory mechanism to control the dlk-1 pathway. We show that ppm-1 functions through its phosphatase activity in a parallel genetic pathway with glo-4 and fsn-1 to regulate both synapse formation in the GABAergic motorneurons and axon termination in the mechanosensory neurons. Our transgenic analysis shows that ppm-1 acts downstream of rpm-1 to negatively regulate the DLK-1 pathway, with PPM-1 most likely acting at the level of pmk-3. Our study provides insight into the negative regulatory mechanisms that control the dlk-1 pathway in neurons and demonstrates a new role for the PP2C/PPM phosphatases as regulators of neuronal development.


Assuntos
Axônios , Caenorhabditis elegans/crescimento & desenvolvimento , Fosfoproteínas Fosfatases/metabolismo , Sinapses , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/enzimologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA