Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Radiol ; 170: 111257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134710

RESUMO

PURPOSE: Isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations play crucial roles in glioma biology. Such genetic information is typically obtained invasively from excised tumor tissue; however, these mutations need to be identified preoperatively for better treatment planning. The relative cerebral blood volume (rCBV) information derived from dynamic susceptibility contrast MRI (DSC-MRI) has been demonstrated to correlate with tumor vascularity, functionality, and biology, and might provide some information about the genetic alterations in gliomas before surgery. Therefore, this study aims to predict IDH and TERTp mutational subgroups in gliomas using deep learning applied to rCBV images. METHOD: After the generation of rCBV images from DSC-MRI data, classical machine learning algorithms were applied to the features obtained from the segmented tumor volumes to classify IDH and TERTp mutation subgroups. Furthermore, pre-trained convolutional neural networks (CNNs) and CNNs enhanced with attention gates were trained using rCBV images or a combination of rCBV and anatomical images to classify the mutational subgroups. RESULTS: The best accuracies obtained with classical machine learning algorithms were 83 %, 68 %, and 76 % for the identification of IDH mutational, TERTp mutational, and TERTp-only subgroups, respectively. On the other hand, the best-performing CNN model achieved 88 % accuracy (86 % sensitivity, 91 % specificity) for the IDH-mutational subgroups, 70 % accuracy (73 % sensitivity and 67 % specificity) for the TERTp-mutational subgroups, and 84 % accuracy (86 % sensitivity, 81 % specificity) for the TERTp-only subgroup using attention gates. CONCLUSIONS: DSC-MRI can be utilized to noninvasively classify IDH- and TERTp-based molecular subgroups of gliomas, facilitating preoperative identification of these genetic alterations.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Mutação
2.
Comput Methods Programs Biomed ; 221: 106825, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35636355

RESUMO

BACKGROUND AND OBJECTIVE: Dementia refers to the loss of memory and other cognitive abilities. Alzheimer's disease (AD), which patients eventually die from, is the most common cause of dementia. In USA, %60 to %80 of dementia cases, are caused by AD. An estimate of 5.2 million people from all age groups have been diagnosed with AD in 2014. Mild cognitive impairment (MCI) is a preliminary stage of dementia with noticeable changes in patient's cognitive abilities. Individuals, who bear MCI symptoms, are prone to developing AD. Therefore, identification of MCI patients is very critical for a plausible treatment before it reaches to AD, the irreversible stage of this neurodegenerative disease. METHODS: Development of machine learning algorithms have recently gained a significant pace in early diagnosis of Alzheimer's disease (AD). In this study, a (2+1)D convolutional neural network (CNN) architecture has been proposed to distinguish mild cognitive impairment (MCI) from AD, based on structural magnetic resonance imaging (MRI). MRI scans of AD and MCI subjects were procured from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 507 scans of 223 AD patients and 507 scans of 204 MCI patients were obtained for the computational experiments. RESULTS: The outcome and robustness of 2D convolutions, 3D convolutions and (2+1)D convolutions were compared. The CNN algorithms incorporated 2 to 6 convolutional layers, depending on the architecture, followed by 4 pooling layers and 3 fully connected layers. (2+1)D convolutional neural network model resulted in the best classification performance with 85% auc score, in addition to an almost two times faster convergence compared to classical 3D CNN methods. CONCLUSIONS: Application of (2+1)D CNN algorithm to large datasets and deeper neural network models can provide a significant advantage in speed, due to its architecture handling images in spatial and temporal dimensions separately.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA