Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031957

RESUMO

Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.


Assuntos
Animais de Laboratório , Animais Selvagens , Animais , Animais Selvagens/fisiologia , Animais de Laboratório/fisiologia
2.
Physiology (Bethesda) ; 36(5): 307-314, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431416

RESUMO

Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.


Assuntos
Evolução Biológica , Peixes , Animais , Humanos , Estilo de Vida
3.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148563

RESUMO

Major ecological transitions such as the invasion of land by aquatic vertebrates may be facilitated by positive feedback between habitat choice and phenotypic plasticity. We used the amphibious fish Kryptolebias marmoratus to test the hypothesis that aquatic hypoxia, emergence behaviour and respiratory plasticity create this type of positive feedback loop that causes fish to spend increasing amounts of time on land. Terrestrially acclimated fish were more sensitive to aquatic hypoxia (emergence at higher PO2) and were less hypoxia tolerant (shorter time to loss of equilibrium) relative to water-acclimated fish, which are necessary conditions for positive feedback. Next, we tested the prediction that exposure to aquatic hypoxia causes fish to emerge frequently, reduce gill surface area, and become less hypoxia tolerant. Indeed, fish exposed to severe aquatic hypoxia spent almost 50% of the time out of water and coverage of the gill lamellae by an inter-lamellar cell mass almost doubled. Fish exposed to aquatic hypoxia that could emerge from water were also more sensitive to subsequent acute aquatic hypoxia and were less hypoxia tolerant than normoxia-exposed controls. These results are opposite those of fish that cannot escape from aquatic hypoxia and presumably arise owing to plastic changes that occur during air exposure. Together, these results indicate that emergence behaviour begets further emergence behaviour, driven by gill remodelling which reduces aquatic respiratory function. This type of positive feedback may explain how amphibious behaviour has repeatedly evolved in fishes that occupy hypoxic aquatic habitats despite the associated challenges of life on land.


Assuntos
Ciprinodontiformes , Peixes , Animais , Retroalimentação , Hipóxia , Plásticos , Água
4.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35673877

RESUMO

Transcriptomic research provides a mechanistic understanding of an organism's response to environmental challenges such as increasing temperatures, which can provide key insights into the threats posed by thermal challenges associated with urbanization and climate change. Differential gene expression and alternative splicing are two elements of the transcriptomic stress response that may work in tandem, but relatively few studies have investigated these interactions in fishes of conservation concern. We studied the imperilled redside dace (Clinostomus elongatus) as thermal stress is hypothesized to be an important cause of population declines. We tested the hypothesis that gene expression-splicing interactions contribute to the thermal stress response. Wild fish exposed to acute thermal stress were compared with both handling controls and fish sampled directly from a river. Liver tissue was sampled to study the transcriptomic stress response. With a gene set enrichment analysis, we found that thermally stressed fish showed a transcriptional response related to transcription regulation and responses to unfolded proteins, and alternatively spliced genes related to gene expression regulation and metabolism. One splicing factor, prpf38b, was upregulated in the thermally stressed group compared with the other treatments. This splicing factor may have a role in the Jun/AP-1 cellular stress response, a pathway with wide-ranging and context-dependent effects. Given large gene interaction networks and the context-dependent nature of transcriptional responses, our results highlight the importance of understanding interactions between gene expression and splicing for understanding transcriptomic responses to thermal stress. Our results also reveal transcriptional pathways that can inform conservation breeding, translocation and reintroduction programs for redside dace and other imperilled species by identifying appropriate source populations.


Assuntos
Processamento Alternativo , Cyprinidae , Animais , Cyprinidae/fisiologia , Fatores de Processamento de RNA , Temperatura , Transcriptoma
5.
J Exp Biol ; 225(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303097

RESUMO

Understanding the mechanisms that create phenotypic variation within and among populations is a major goal of physiological ecology. Variation may be a consequence of functional trade-offs (i.e. improvement in one trait comes at the expense of another trait) or alternatively may reflect the intrinsic quality of an organism (i.e. some individuals are simply better overall performers than others). There is evidence for both ideas in the literature, suggesting that environmental context may mediate whether variation results from trade-offs or differences in individual quality. We tested this overarching 'context dependence' hypothesis by comparing the aquatic and terrestrial athletic performance of the amphibious fish Kryptolebias marmoratus captured from two contrasting habitats, a large pond and small burrows. Overall, pond fish were superior terrestrial athletes but burrow fish were better burst swimmers, suggestive of a performance trade-off at the population level. Within each population, however, there was no evidence of a performance trade-off. In burrow fish, athletic performance was positively correlated with muscle content and body condition, consistent with the individual quality hypothesis. In pond fish, there was only a relationship between glycolytic white muscle and aquatic burst performance. Notably, pond fish were in better body condition, which may mask relationships between condition and athletic performance. Overall, our data highlight that population-level trends are insufficient evidence for the existence of phenotypic trade-offs in the absence of similar within-population patterns. Furthermore, we only found evidence for the individual quality hypothesis in one population, suggesting that patterns of phenotypic covariance are context dependent.


Assuntos
Ciprinodontiformes , Peixes Listrados , Animais , Composição Corporal , Ciprinodontiformes/fisiologia , Ecossistema , Peixes , Humanos , Natação
6.
Biol Lett ; 18(1): 20210468, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042396

RESUMO

Habitat choice can either speed up or slow rates of phenotypic evolution, depending on which trait is measured. We suggest that habitat choice plays an analogous, and generally overlooked, role in shaping patterns of phenotypic plasticity. Using our work with an amphibious fish, we discuss two case studies that demonstrate how habitat choice can both promote and constrain expression of plasticity. First, habitat choice during the dry season accentuates adaptive metabolic plasticity and minimizes maladaptive changes to muscle, ultimately increasing survival time out of water. Second, a trade-off between water- and air-breathing drives matching habitat choice, resulting in positive feedback that reinforces respiratory specialization and environmental preference. Overall, these case studies demonstrate that we must consider the interactions between plasticity and habitat choice to fully understand how animals survive in the face of environmental change. Without considering both processes simultaneously, the performance of animals in challenging conditions can be either under- or over-estimated. Finally, because habitat choice shapes the frequency and predictability of environmental changes that animals experience, feedback between habitat choice and expressions of phenotypic plasticity may be an important factor that influences how plasticity evolves.


Assuntos
Adaptação Fisiológica , Territorialidade , Animais , Ecossistema , Fenótipo , Água
7.
Anim Cogn ; 24(3): 395-406, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33595750

RESUMO

With over 30,000 recognized species, fishes exhibit an extraordinary variety of morphological, behavioural, and life-history traits. The field of fish cognition has grown markedly with numerous studies on fish spatial navigation, numeracy, learning, decision-making, and even theory of mind. However, most cognitive research on fishes takes place in a highly controlled laboratory environment and it can therefore be difficult to determine whether findings generalize to the ecology of wild fishes. Here, we summarize four prominent research areas in fish cognition, highlighting some of the recent advances and key findings. Next, we survey the literature, targeting these four areas, and quantify the nearly ubiquitous use of captive-bred individuals and a heavy reliance on lab-based research. We then discuss common practices that occur prior to experimentation and within experiments that could hinder our ability to make more general conclusions about fish cognition, and suggest possible solutions. By complementing ecologically relevant laboratory-based studies with in situ cognitive tests, we will gain further inroads toward unraveling how fishes learn and make decisions about food, mates, and territories.


Assuntos
Cognição , Navegação Espacial , Animais , Compreensão , Peixes , Aprendizagem
8.
Artigo em Inglês | MEDLINE | ID: mdl-33217558

RESUMO

When the amphibious mangrove rivulus (Kryptolebias marmoratus) leaves water for extended periods, hemoglobin-O2 binding affinity increases. We tested the hypothesis that the change in affinity was a consequence of hemoglobin isoform switching driven by exposure to environments associated with increased internal CO2 levels. We exposed K. marmoratus to either water (control, pH 8.1), air, aquatic hypercarbia (5.1 kPa CO2, pH 6.6-6.8), or aquatic acid (isocarbic control, pH 6.6-6.8), for 7 days, and measured hemoglobin-O2 affinity spectrophotometrically. We found that mangrove rivulus compensated for elevated CO2 and aquatic acid exposure by shifting hemoglobin-O2 affinity back to aquatic (control) levels when measured at an ecologically-relevant high CO2 level that would be experienced in vivo. Using proteomics, we found that the hemoglobin subunits present in the blood did not change between treatments, but air and aquatic acid exposure altered the abundance of cathodic hemoglobin subunits. We therefore conclude that hemoglobin isoform switching is not a primary strategy used by mangrove rivulus to adjust P50 under these conditions. Abundances of other RBC proteins also differed between treatment groups relative to control fish (e.g. Rhesus protein type A, band 3 anion exchanger). Overall, our data indicate that both aquatic hypercarbia and aquatic acidosis create similar changes in hemoglobin-O2 affinity as air exposure. However, the protein-level consequences differ between these groups, indicating that the red blood cell response of mangrove rivulus can be modulated depending on the environmental cue received.


Assuntos
Aclimatação/fisiologia , Peixes/fisiologia , Hemoglobinas/metabolismo , Hipercapnia/fisiopatologia , Oxigênio/metabolismo , Animais
9.
Proc Biol Sci ; 287(1920): 20192796, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32075528

RESUMO

The morphology of fish gills is closely linked to aerobic capacity and tolerance of environmental stressors such as hypoxia. The importance of gill surface area is well studied, but little is known about how the mechanical properties of gill tissues determine function. In some fishes, the bases of the gill filaments are surrounded by a calcified 'sheath' of unknown function. We tested two non-exclusive hypotheses: (i) calcified gill filaments enhance water flow through the gill basket, improving aquatic respiratory function, and (ii) in amphibious fishes, calcification provides support for gills out of water. In a survey of more than 100 species of killifishes and related orders, we found filament calcification was widespread and thus probably arose before the evolution of amphibious lifestyles in killifishes. Calcification also did not differ between amphibious and fully aquatic species, but terrestrial acclimation caused calcium deposition on the filaments of the killifish Kryptolebias marmoratus, suggesting a possible structural role when out of water. We found strong evidence supporting a role for filament calcification in enhancing aquatic respiratory function. First, acclimation to increased respiratory demands (hypoxia, elevated temperatures) induced calcium deposition on the filaments of K. marmoratus. Next, gentle removal of filament calcification decreased branchial resistance to water flow, indicating disruption of gill basket positioning. Thus, the mechanical properties of the gill filaments appear to play an important and previously unappreciated role in determining fish respiratory function.


Assuntos
Peixes/fisiologia , Brânquias/anatomia & histologia , Aclimatação , Animais , Brânquias/fisiologia , Hipóxia , Peixes Listrados
10.
J Exp Biol ; 223(Pt 19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046579

RESUMO

A powerful way to evaluate scientific explanations (hypotheses) is to test the predictions that they make. In this way, predictions serve as an important bridge between abstract hypotheses and concrete experiments. Experimental biologists, however, generally receive little guidance on how to generate quality predictions. Here, we identify two important components of good predictions - criticality and persuasiveness - which relate to the ability of a prediction (and the experiment it implies) to disprove a hypothesis or to convince a skeptic that the hypothesis has merit. Using a detailed example, we demonstrate how striving for predictions that are both critical and persuasive can speed scientific progress by leading us to more powerful experiments. Finally, we provide a quality control checklist to assist students and researchers as they navigate the hypothetico-deductive method from puzzling observations to experimental tests.


Assuntos
Biologia , Projetos de Pesquisa , Humanos
11.
J Exp Biol ; 222(Pt 24)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31796606

RESUMO

Metabolic rate and life-history traits vary widely both among and within species, reflecting trade-offs in energy allocation, but the proximate and ultimate causes of variation are not well understood. We tested the hypothesis that these trade-offs are mediated by environmental heterogeneity, using isogenic strains of the amphibious fish Kryptolebias marmoratus that vary in the amount of time each can survive out of water. Consistent with pace of life theory, the strain that survived air exposure the longest generally exhibited a 'slow' phenotype, including the lowest metabolic rate, largest scope for metabolic depression, slowest consumption of energy stores and least investment in reproduction under standard conditions. Growth rates were fastest in the otherwise slow strain, however. We then tested for fitness trade-offs between 'fast' and 'slow' strains using microcosms where fish were held either with constant water availability or under fluctuating conditions where water was absent for half of the experiment. Under both conditions the slow strain grew larger and was in better condition, and under fluctuating conditions the slow strain produced more embryos. However, the fast strain had larger adult population sizes under both conditions, indicating that fecundity is not the sole determinant of population size in this species. We conclude that genetically based differences in the pace of life of amphibious fish determine survival duration out of water. Relatively slow fish tended to perform better under conditions of limited water availability, but there was no detectable cost under control conditions. Thus, pace of life differences may reflect a conditionally neutral instead of antagonistic trade-off.


Assuntos
Ciprinodontiformes/fisiologia , Características de História de Vida , Longevidade , Animais , Feminino , Masculino , Autofertilização
12.
Proc Biol Sci ; 285(1884)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111602

RESUMO

The invasion of land required amphibious fishes to evolve new strategies to avoid toxic ammonia accumulation in the absence of water flow over the gills. We investigated amphibious behaviour and nitrogen excretion strategies in six phylogenetically diverse Aplocheiloid killifishes (Anablepsoides hartii, Cynodonichthys hildebrandi, Rivulus cylindraceus, Kryptolebias marmoratus, Fundulopanchax gardneri, and Aplocheilus lineatus) in order to determine if a common strategy evolved. All species voluntarily emersed (left water) over several days, and also in response to environmental stressors (low O2, high temperature). All species were ammoniotelic in water and released gaseous ammonia (NH3 volatilization) during air exposure as the primary route for nitrogen excretion. Metabolic depression, urea synthesis, and/or ammonia accumulation during air exposure were not common strategies used by these species. Immunostaining revealed the presence of ammonia-transporting Rhesus proteins (Rhcg1 and Rhcg2) in the skin of all six species, indicating a shared mechanism for ammonia volatilization. We also found Rhcg in the skin of several other fully aquatic fishes, implying that cutaneous ammonia excretion is not exclusive to amphibious fishes. Overall, our results demonstrate that similar nitrogen excretion strategies while out of water were used by all killifish species tested; possibly the result of shared ancestral amphibious traits, phenotypic convergence, or a combination of both.


Assuntos
Amônia/metabolismo , Peixes Listrados/fisiologia , Nitrogênio/metabolismo , Natação , Ureia/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Eliminação Cutânea , Proteínas de Peixes/metabolismo , Volatilização
13.
J Exp Biol ; 221(Pt 11)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691310

RESUMO

Skeletal muscle remodeling in response to terrestrial acclimation improves the locomotor performance of some amphibious fishes on land, but the cue for this remodeling is unknown. We tested the hypothesis that muscle remodeling in the amphibious Kryptolebias marmoratus on land is driven by higher O2 availability in atmospheric air, and the alternative hypothesis that remodeling is induced by a different environmental or physiological condition that fish experience on land. Fish were acclimated to 28 days of air, or to aquatic hyperoxia, hypercapnia, hypoxia, elevated temperature or fasting conditions. Air, fasting and hyperoxic conditions increased (>25%) the size of oxidative fibers in K. marmoratus while hypoxia had the reverse effect (23% decrease). Surprisingly, hyperoxia acclimation also resulted in a transformation of the musculature to include large bands of oxidative-like muscle. Our results show that K. marmoratus is highly responsive to environmental O2 levels and capitalizes on O2-rich opportunities to enhance O2 utilization by skeletal muscle.


Assuntos
Aclimatação , Ciprinodontiformes/fisiologia , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Animais
14.
J Exp Biol ; 220(Pt 20): 3621-3631, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046415

RESUMO

Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation.


Assuntos
Peso Corporal , Osso e Ossos/fisiologia , Ciprinodontiformes/fisiologia , Meio Ambiente , Animais
15.
J Exp Biol ; 219(Pt 15): 2245-59, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27489213

RESUMO

Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods.


Assuntos
Evolução Biológica , Peixes/fisiologia , Animais , Peixes/crescimento & desenvolvimento , Peixes/metabolismo , Gases/metabolismo , Gravitação , Fenótipo , Água
16.
J Exp Biol ; 219(Pt 20): 3204-3207, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591317

RESUMO

Air and water differ dramatically in density and viscosity, posing different biomechanical challenges for animal locomotion. We asked how terrestrial acclimation influences locomotion in amphibious fish, specifically testing the hypothesis that terrestrial tail flip performance is improved by plastic changes in the skeletal muscle. Mangrove rivulus Kryptolebias marmoratus, which remain largely inactive out of water, were exposed to water or air for 14 days and a subgroup of air-exposed fish was also recovered in water. Tail flip jumping performance on land improved dramatically in air-acclimated fish, they had lower lactate levels compared with control fish, and these effects were mostly reversible. Muscle plasticity significantly increased oxidative muscle cross-sectional area and fibre size, as well as the number of capillaries per fibre. Our results show that reversible changes to the oxidative skeletal muscle of K. marmoratus out of water enhance terrestrial locomotory performance, even in the absence of exercise training.


Assuntos
Aclimatação/fisiologia , Ciprinodontiformes/fisiologia , Meio Ambiente , Locomoção/fisiologia , Animais , Músculo Esquelético/fisiologia , Água
17.
J Exp Biol ; 219(Pt 1): 109-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26739687

RESUMO

Recent studies suggest that projected rises of aquatic CO2 levels cause acid-base regulatory responses in fishes that lead to altered GABAergic neurotransmission and disrupted behaviour, threatening fitness and population survival. It is thought that changes in Cl(-) and HCO3 (-) gradients across neural membranes interfere with the function of GABA-gated anion channels (GABAA receptors). So far, such alterations have been revealed experimentally by exposing species living in low-CO2 environments, like many oceanic habitats, to high levels of CO2 (hypercapnia). To examine the generality of this phenomenon, we set out to study the opposite situation, hypothesizing that fishes living in typically hypercapnic environments also display behavioural alterations if exposed to low CO2 levels. This would indicate that ion regulation in the fish brain is fine-tuned to the prevailing CO2 conditions. We quantified pH regulatory variables and behavioural responses of Pangasianodon hypophthalmus, a fish native to the hypercapnic Mekong River, acclimated to high-CO2 (3.1 kPa) or low-CO2 (0.04 kPa) water. We found that brain and blood pH was actively regulated and that the low-CO2 fish displayed significantly higher activity levels, which were reduced after treatment with gabazine, a GABAA receptor blocker. This indicates an involvement of the GABAA receptor and altered Cl(-) and HCO3 (-) ion gradients. Indeed, Goldman calculations suggest that low levels of environmental CO2 may cause significant changes in neural ion gradients in P. hypophthalmus. Taken together, the results suggest that brain ion regulation in fishes is fine-tuned to the prevailing ambient CO2 conditions and is prone to disruption if these conditions change.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Peixes-Gato/fisiologia , Água Doce/química , Aclimatação , Animais , Química Encefálica , Concentração de Íons de Hidrogênio , Receptores de GABA-A/metabolismo , Rios , Transmissão Sináptica , Vietnã
18.
J Exp Biol ; 218(Pt 20): 3249-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26491194

RESUMO

Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks.


Assuntos
Peixes Listrados/embriologia , Consumo de Oxigênio/fisiologia , Reprodução/fisiologia , Ar , Animais , Ecossistema , Gema de Ovo/metabolismo , Peixes Listrados/crescimento & desenvolvimento , Peixes Listrados/metabolismo , Autofertilização
19.
J Exp Biol ; 218(Pt 19): 2987-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254321

RESUMO

Aquatic hypercapnia may have helped to drive ancestral vertebrate invasion of land. We tested the hypothesis that amphibious fishes sense and respond to elevated aquatic PCO2 by behavioural avoidance mechanisms, and by morphological changes at the chemoreceptor level. Mangrove rivulus (Kryptolebias marmoratus) were exposed to 1 week of normocapnic control water (pH 8), air, hypercapnia (5% CO2, pH 6.8) or isocapnic acidosis (pH 6.8). We found that the density of CO2/H(+) chemoreceptive neuroepithelial cells (NECs) was increased in hypercapnia or isocapnic acidosis-exposed fish. Projection area (a measure of cell size) was unchanged. Acute exposure to progressive hypercapnia induced the fish to emerse (leave water) at water pH values ∼6.1, whereas addition of HCl to water caused a more variable response with a lower pH threshold (∼pH 5.5). These results support our hypothesis and suggest that aquatic hypercapnia provides an adequate stimulus for extant amphibious fishes to temporarily transition from aquatic to terrestrial habitats.


Assuntos
Comportamento Animal , Dióxido de Carbono/metabolismo , Ciprinodontiformes/fisiologia , Células Neuroepiteliais/citologia , Águas Salinas/química , Aclimatação/fisiologia , Animais , Concentração de Íons de Hidrogênio , Células Neuroepiteliais/fisiologia
20.
Biol Lett ; 11(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26490418

RESUMO

Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min(-1)) than those in a high humidity environment (1.6°C min(-1)). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change.


Assuntos
Aclimatação/fisiologia , Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Ciprinodontiformes/fisiologia , Temperatura Alta , Umidade , Animais , Ciprinodontiformes/crescimento & desenvolvimento , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA