Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 65(2): 311-324, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33067671

RESUMO

Norway spruce (Picea abies L.) is among the most sensitive coniferous species to ongoing climate change. However, previous studies on its growth response to increasing temperatures have yielded contrasting results (from stimulation to suppression), suggesting highly site-specific responses. Here, we present the first study that applies two independent approaches, i.e. the nonlinear, process-based Vaganov-Shashkin (VS) model and linear daily response functions. Data were collected at twelve sites in Slovenia differing in climate regimes and ranging elevation between 170 and 1300 m a.s.l. VS model results revealed that drier Norway spruce sites at lower elevations are mostly moisture limited, while moist high-elevation sites are generally more temperature limited. Daily response functions match well the pattern of growth-limiting factors from the VS model and further explain the effect of climate on radial growth: prevailing growth-limiting factors correspond to the climate variable with higher correlations. Radial growth correlates negatively with rising summer temperature and positively with higher spring precipitation. The opposite response was observed for the wettest site at the highest elevation, which positively reacts to increased summer temperature and will most likely benefit from a warming climate. For all other sites, the future radial growth of Norway spruce largely depends on the balance between spring precipitation and summer temperature.


Assuntos
Abies , Picea , Pinus , Mudança Climática , Noruega , Eslovênia , Árvores
2.
Proc Natl Acad Sci U S A ; 114(27): 6966-6971, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630302

RESUMO

Phenological responses of vegetation to climate, in particular to the ongoing warming trend, have received much attention. However, divergent results from the analyses of remote sensing data have been obtained for the Tibetan Plateau (TP), the world's largest high-elevation region. This study provides a perspective on vegetation phenology shifts during 1960-2014, gained using an innovative approach based on a well-validated, process-based, tree-ring growth model that is independent of temporal changes in technical properties and image quality of remote sensing products. Twenty composite site chronologies were analyzed, comprising about 3,000 trees from forested areas across the TP. We found that the start of the growing season (SOS) has advanced, on average, by 0.28 d/y over the period 1960-2014. The end of the growing season (EOS) has been delayed, by an estimated 0.33 d/y during 1982-2014. No significant changes in SOS or EOS were observed during 1960-1981. April-June and August-September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1 °C in April-June minimum temperature shifted the dates of xylem phenology by 6 to 7 d, lengthening the period of tree-ring formation. This study extends the chronology of TP phenology farther back in time and reconciles the disparate views on SOS derived from remote sensing data. Scaling up this analysis may improve understanding of climate change effects and related phenological and plant productivity on a global scale.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Árvores/crescimento & desenvolvimento , Tibet
3.
Front Plant Sci ; 13: 780153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712567

RESUMO

Climate change projections forecast most significant impacts on high-latitude forest ecosystems. Particularly, climate warming in boreal regions should increase fire severity and shorten its return interval. These processes can change the dynamics of boreal forests as younger stands become more dominating with a shift from gymnosperm to angiosperm. However, despite angiosperm's phenological and physiological traits have a high potential for ecophysiological and dendroclimatological studies in Siberia, they have been rarely investigated due to their short-term lifespan in comparison with gymnosperm. Modeling tree growth is a common way to understand tree growth responses to environmental changes since it allows using available experiment or field data to interpret observed climate-growth relationships based on the biological principles. In our study, we applied the process-based Vaganov-Shashkin (VS) model of tree-ring growth via a parameterization approach VS-oscilloscope for the first time to an angiosperm tree species (Betula pubescens Ehrh.) from continuous permafrost terrain to understand its tree-radial growth dynamic. The parameterization of the VS model provided highly significant positive correlations (p < 0.05) between the simulated growth curve and initial tree-ring chronologies for the period 1971-2011 and displayed the average duration of the growing season and intra-seasonal key limiting factors for xylem formation. Modeled result can be valid at the regional scale for remote birch stands, whereas, justification of the local non-climatic input data of the model provided precise site-specific tree growth dynamic and their substantiated responses to driving factors.

4.
Front Plant Sci ; 12: 613643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584770

RESUMO

Significant alterations of cambial activity might be expected due to climate warming, leading to growing season extension and higher growth rates especially in cold-limited forests. However, assessment of climate-change-driven trends in intra-annual wood formation suffers from the lack of direct observations with a timespan exceeding a few years. We used the Vaganov-Shashkin process-based model to: (i) simulate daily resolved numbers of cambial and differentiating cells; and (ii) develop chronologies of the onset and termination of specific phases of cambial phenology during 1961-2017. We also determined the dominant climatic factor limiting cambial activity for each day. To asses intra-annual model validity, we used 8 years of direct xylogenesis monitoring from the treeline region of the Krkonose Mts. (Czechia). The model exhibits high validity in case of spring phenological phases and a seasonal dynamics of tracheid production, but its precision declines for estimates of autumn phenological phases and growing season duration. The simulations reveal an increasing trend in the number of tracheids produced by cambium each year by 0.42 cells/year. Spring phenological phases (onset of cambial cell growth and tracheid enlargement) show significant shifts toward earlier occurrence in the year (for 0.28-0.34 days/year). In addition, there is a significant increase in simulated growth rates during entire growing season associated with the intra-annual redistribution of the dominant climatic controls over cambial activity. Results suggest that higher growth rates at treeline are driven by (i) temperature-stimulated intensification of spring cambial kinetics, and (ii) decoupling of summer growth rates from the limiting effect of low summer temperature due to higher frequency of climatically optimal days. Our results highlight that the cambial kinetics stimulation by increasing spring and summer temperatures and shifting spring phenology determine the recent growth trends of treeline ecosystems. Redistribution of individual climatic factors controlling cambial activity during the growing season questions the temporal stability of climatic signal of cold forest chronologies under ongoing climate change.

5.
Front Plant Sci ; 11: 1268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922430

RESUMO

New insights into the intra-annual dynamics of tree-ring formation can improve our understanding of tree-growth response to environmental conditions at high-resolution time scales. Obtaining this information requires, however, a weekly monitoring of wood formation, sampling that is extremely time-intensive and scarcely feasible over vast areas. Estimating the timing of cambial and xylem differentiation by modeling thus represents an interesting alternative for obtaining this important information by other means. Temporal dynamics of cambial divisions can be extracted from the daily tree-ring growth rate computed by the Vaganov-Shashkin (VS) simulation model, assuming that cell production is tightly linked to tree-ring growth. Nonetheless, these predictions have yet to be compared with direct observations of wood development, i.e., via microcoring, over a long time span. We tested the performance of the VS model by comparing the observed and predicted timing of wood formation in black spruce [Picea mariana (Mill.)]. We obtained microcores over 15 years at 5 sites along a latitudinal gradient in Quebec (Canada). The measured variables included cell size and the timing of cell production and differentiation. We calibrated the VS model using daily temperature and precipitation recorded by weather stations located on each site. The predicted and observed timing of cambial and enlarging cells were highly correlated (R 2 = 0.8); nonetheless, we detected a systematic overestimation in the predicted timing of cambial cells, with predictions delayed by 1-20 days compared with observations. The growth rate of cell diameter was correlated with the predicted growth rate assigned to each cambial cell, confirming that cell diameter developmental dynamics have the potential to be inferred by the tree-ring growth curve of the VS model. Model performances decrease substantially in estimating the end of wood formation. The systematic errors suggest that the actual relationships implemented in the model are unable to explain the phenological events in autumn. The mismatch between the observed and predicted timing of wood formation in black spruce within our study area can be reduced by better adapting the VS model to wet sites, a context for which this model has been rarely used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA