Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int Immunol ; 36(9): 471-481, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38646837

RESUMO

Interleukin-6 (IL-6) plays a crucial role in various cellular functions, including innate and adaptive immune responses. Dysregulated expression of IL-6 is associated with hyperinflammation and chronic inflammatory diseases. In this study, we aimed to identify the enhancer regions responsible for robust Il6 mRNA expression in murine macrophages. Through comprehensive genome-wide ChIP- and ATAC-seq analyses, we identified two distinct clusters, termed E1 and E2 regions, located at -144 to -163 kb relative to the Il6 transcription start site in lipopolysaccharide (LPS)-activated murine macrophages. These clusters exhibited an accumulation of histone modification marks (H3K27ac and H3K4me1), as well as open chromatin, and were found to contain binding sites for the transcription factors PU.1, NF-κB, C/EBPß, and JunB. Upregulation of non-coding RNA (ncRNA) transcripts from the E1 and E2 regions was observed upon LPS stimulation, and repression of these ncRNAs resulted in abrogation of Il6 expression. Additionally, deletion of either E1 or E2 region significantly impaired Il6 expression, while CRISPR/dCas9 activation-mediated recruitment of the co-activator p300 to the E1 and E2 regions facilitated Il6 expression. Collectively, our findings suggest that the E1 and E2 regions serve as putative enhancers for Il6 expression.


Assuntos
Elementos Facilitadores Genéticos , Interleucina-6 , Lipopolissacarídeos , Macrófagos , Animais , Camundongos , Interleucina-6/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Elementos Facilitadores Genéticos/genética , Lipopolissacarídeos/farmacologia , Transcrição Gênica , Regulação da Expressão Gênica/imunologia , Camundongos Endogâmicos C57BL , Células RAW 264.7
2.
J Gen Appl Microbiol ; 68(1): 24-29, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35370230

RESUMO

Musty or moldy off-odor in sake severely reduces its quality. Such off-odor is caused by 2,4,6-trichloroanisole (TCA), a compound that is produced by Aspergillus oryzae during sake production by O-methylating the precursor 2,4,6-trichlorophenol (TCP). TCP suppresses the growth of fungi, including A. oryzae, although TCA does not. Therefore, strains that are unable to convert TCP to TCA should be sensitive to TCP in the medium. Nevertheless, A. oryzae with a disrupted O-methyltransferase gene (ΔomtT) grew in a medium containing TCP. In agar medium, we observed no growth difference between the ΔomtT strain and a non-disrupted transformant; however, a significant growth delay was observed with the ΔomtT strain grown in liquid medium containing 0.5 µg/mL of TCP. This strain was more sensitive to low concentrations of TCP, suggesting that omtT contributes to the conversion (detoxification) of TCP in liquid culture. We generated A. oryzae RIB 40 mutants by ultraviolet irradiation and then cultured them in liquid medium containing TCP to obtain strains that did not produce moldy odor. The slow-growing strains were cultured in agar plates and then used to make koji with added TCP. We obtained three strains with lower TCA-producing ability and with sufficient hydrolase activities for sake brewing.


Assuntos
Aspergillus oryzae , Clorofenóis , Proteínas de Saccharomyces cerevisiae , Ágar , Bebidas Alcoólicas , Anisóis , Aspergillus oryzae/genética , Fermentação , Saccharomyces cerevisiae
3.
J Gen Appl Microbiol ; 67(6): 256-259, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34629338

RESUMO

During the making of rice-koji for sake production, 2,4,6-trichlorophenol (TCP) is O-methylated to 2,4,6-trichloroanisole (TCA) by the koji-mold, Aspergillus oryzae, resulting in a musty/moldy off-odor, which significantly reduces the quality of sake. Thus, we aim to develop A. oryzae strains with a less-efficient ability to produce TCA. TCP is a fungicide that suppresses the growth of fungi, whereas TCA does not. The exact effects of TCP on the growth of A. oryzae are unknown. However, it is assumed that a strain with low TCP conversion ability will be sensitive to TCP concentration. In this study, we investigated the effects of the different concentrations of TCP on the growth suppression of A. oryzae. As the TCP concentration in the media increased, the growth rate, and conidia formation of A. oryzae slowed down. No growth was observed in liquid culture (for 1 day at 30°C) containing more than 30 µg/mL of TCP and in agar culture (for 7 days at 30°C) containing more than 50 µg/mL of TCP. However, A. oryzae was able to grow on alpha rice containing higher concentrations of TCP. The results in agar culture are consistent with the effects of TCP on other Aspergillus species.


Assuntos
Aspergillus oryzae , Clorofenóis , Fungicidas Industriais , Oryza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA