Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(1): 69-85, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36458903

RESUMO

Extrusion-based 3D printing has emerged as the most versatile additive manufacturing technique for the printing of practically any material. However, 3D printing of functional materials often activates thermo-mechanical degradation, which affects the 3D shape quality. Herein, we describe the structural changes of eight different starch sources (normal or waxy) as a consequence of the temperature of an extrusion-based 3D printing system through in-depth characterization of their molecular and structural changes. The combination of size-exclusion chromatography, small-angle X-ray scattering, X-ray diffraction, dynamic viscoelasticity measurements, and in vitro digestion has offered an extensive picture of the structural and biological transformations of starch varieties. Depending on the 3D printing conditions, either gelatinization was attained ("moderate" condition) or single-amylose helix formation was induced ("extreme" condition). The stiff amylopectin crystallites in starch granules were more susceptible to thermo-mechanical degradation compared to flexible amorphous amylose. The crystalline morphology of the starch varieties varied from B-type crystallinity for the starch 3D printing at the "moderate" condition to a mixture of C- and V-type crystallinity regarding the "extreme" condition. The "extreme" condition reduced the viscoelasticity of 3D-printed starches but increased the starch digestibility rate/extent. In contrast, the "moderate" condition increased the viscoelastic moduli, decreasing the starch digestion rate/extent. This was more considerable mainly regarding the waxy starch varieties. Finally, normal starch varieties presented a well-defined shape fidelity, being able to form a stable structure, whereas waxy starches exhibited a non-well-defined structure and were not able to maintain their integrity after printing. The results of this research allow us to monitor the degradability of a variety of starch cultivars to create starch-based 3D structures, in which the local structure can be controlled based on the 3D printing parameters.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Amilopectina/análise , Amilopectina/química , Amilopectina/metabolismo , Difração de Raios X , Temperatura
2.
Curr Res Food Sci ; 8: 100686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380133

RESUMO

Hierarchically porous structures combine microporosity, mesoporosity, and microporosity to enhance pore accessibility and transport, which are crucial to develop high performance materials for biofabrication, food, and pharmaceutical applications. This work aimed to develop a 4D-printed smart hierarchical macroporous structure through 3D printing of Pickering-type high internal phase emulsions (Pickering-HIPEs). The key was the utilization of surface-active (hydroxybutylated) starch nanomaterials, including starch nanocrystals (SNCs) (from waxy maize starch through acid hydrolysis) or starch nanoparticles (SNPs) (obtained through an ultrasound treatment). An innovative procedure to fabricate the functionalized starch nanomaterials was accomplished by grafting 1,2-butene oxide using a cold plasma technique to enhance their surface hydrophobicity, improving their aggregation, and thus attaining a colloidally stabilized Pickering-HIPEs with a low concentration of each surface-active starch nanomaterial. A flocculation of droplets in Pickering-HIPEs was developed after the addition of modified SNCs or SNPs, leading to the formation of a gel-like structure. The 3D printing of these Pickering-HIPEs developed a highly interconnected large pore structure, possessing a self-assembly property with thermoresponsive behavior. As a potential drug delivery system, this thermoresponsive macroporous 3D structure offered a lower critical solution temperature (LCST)-type phase transition at body temperature, which can be used in the field of smart releasing of bioactive compounds.

3.
Food Chem ; 423: 136145, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187005

RESUMO

This work presents a starch extracted from jaboticaba seeds. The extraction yielded 22.65 ± 0.63% of a slightly beige powder (a* 1.92 ± 0.03, b* 10.82 ± 0.17 and L* 92.27 ± 0.24). The starch presented low protein content (1.19% ± 0.11) and phenolic compounds (0.58 ± 0.02 GAE. g) as contaminants. The starch granules showed small, smooth, irregular shapes and sizes between 6.1 and 9.6 µm. The starch presented a high content of amylose (34.50%±0.90) and a predominance of intermediate chain length (B1-chains 51%), followed by A-chains (26%) in the amylopectin. The SEC-MALS-DRI showed the starch had a low molecular weight (5.3·106 g·mol-1) and amylose/amylopectin content compatible with a Cc-type starch, confirmed in the X-ray diffractogram. Thermal studies showed a low onset temperature (T0 = 66.4 ± 0.46 °C) and gelatinization enthalpy (ΔH = 9.1 ± 1.19 J g-1) but a high-temperature range (ΔT = 14.1 ± 0.52 °C). The jaboticaba starch proved to be a promising material for food and non-food applications.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Amilose/química , Sementes/química , Temperatura Alta
4.
J Food Biochem ; 46(2): e14080, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35023168

RESUMO

This study aimed to investigate the effect of pre-swelling at 55°C for 1 hr followed by freezing-thawing cycles (PFTCs), and freezing-thawing cycles (FTCs) in the starch granules to improve the freeze-thaw stability and evaluate its impact on the molecular, morphological, and functional properties of potato starch (PS). FTCs at 1 cycle and 7 cycles were applied for both treated PS. Microscopical structure, thermal, molecular, and functional properties (i.e., swelling power, solubility, shear viscosity, and gel strength) were comprehensively analyzed. In terms of granule structures, treated PS by FTC showed a slightly affected on the surface of starch granules, while treating PS by PFTC showed an affected in the form of small cracks and holes in the outer surface of starch granules. The gelatinization enthalpy (∆Hgel ) values decreased in the treated PS compared with the native. Thus, decreasing was systemically increased with the number of applied cycles from 1- to 7-cycle. The viscosity of treated PS decreased systematically with molecular degradation or the physical modification, with remarkable reduction, particularly at a higher shear rate (150°C). Treated PS by FTC showed a clear difference (p ≤ .05) in gel values compared with the native at disintegration temperature 115°C. Finally, the degradation of the molecular properties showed significant differences between the native and treated PS either by the FTC or PFTC in molecular weight of starch and amylose without debranching and after debranching by pullulanase enzyme. PRACTICAL APPLICATIONS: Freezing is one of the standard preservation methods used for ready-to-eat products. When this type of food's exposed to more freeze-thaw cycles, the phase separation will be increased due to the increase in retrogradation of amylopectin. To avoid such changes during frozen storage, native potato starch (PS) was modified using both pre-swelling followed by freezing-thawing cycles (PFTCs) and freezing-thawing cycles (FTCs) at 1- and 7-cycle to enhance starch properties, such as swelling power, solubility, shear viscosity, and gel strength. The findings of this study might add to the theoretical understanding of modified PS and act as a guideline for modified starch manufacturing.


Assuntos
Solanum tuberosum , Amilose , Congelamento , Solanum tuberosum/metabolismo , Amido/metabolismo , Viscosidade
5.
Carbohydr Polym ; 230: 115633, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887911

RESUMO

The modification of starch owing to acid-thinning (AT) is intensified by a concomitant ultrasound (US) treatment, but the specific effect of the US on molecular changes, and the respective contribution of the single impacts are still unknown. The present study investigates the supporting effect of the US via examination and comparison of the single modifications [general conditions: starch slurry (40 % w/w), 40 °C, stirring; US: gradation of amplitude (50 and 100 %), cycle (0.50 and 0.75) and sonication time (20 and 60 min); AT: 0.36 M HCl, reaction time of 4 h] with the corresponding US assisted AT modified starches (US-AT) in terms of granular, molecular and functional properties. The US induced essentially a molecular degradation (debranching) of the amylopectin (AP), whereas chain cleavage within the amylose (AM) wasn't excluded completely. Altogether, the US was estimated to be a separate and assisting modification rather than an AT accelerating component.

6.
Carbohydr Polym ; 219: 172-180, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151514

RESUMO

With respect of the partial molecular degradation of the starch polysaccharides, the impact of the acid-thinning process on the specific starch properties of two corn genotypes was investigated. A high amylose corn (HACS) and a waxy corn (WxCS) starch were hydrolyzed using HCl in the laboratory scale slurry process (40% w/w, 30 °C). The acid concentration (0.3, 0.6 and 0.9 M) as well as the hydrolysis time (4, 10 and 20 h) were graded systematically (experimental design) and the obtained modified starch genotypes characterized comprehensively. As revealed by scanning electron micoscopy (SEM), the supramolecular structure was preserved in general, and the carbohydrate solubilization was limited to about 2-3 %. Molecularly dispersed solutions were characterized by means of size exclusion chromatography-multi angle laser light scattering-differential refractive index detection (SEC-MALS-DRI). Both acid concentration and hydrolysis time reduced the molar mass (MM) of the starch [HACS: 4.4∙106 (native)…1.2∙106 g∙mol-1 (highest degree of degradation); WxCS: 49.7∙106 (native)…6.4∙106 g∙mol-1 (highest degree of degradation)], the amylose (AM) fraction as well as the amylopectin (AP) branch chain length systematically. Perceptible differences in dependence on starch variety were ascertained and discussed. The molecular properties of the investigated acid-thinned genotypes are selectively controllable with the hydrolysis process. The relationship between modification process, starch's molecular state, and resulting functional properties was examined in the second part of the study.


Assuntos
Amilopectina/química , Amilose/química , Amido/química , Zea mays/metabolismo , Análise de Variância , Cromatografia em Gel , Genótipo , Ácido Clorídrico/química , Hidrólise , Concentração Osmolar , Fatores de Tempo , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA