RESUMO
Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.
Assuntos
Antifúngicos , Candida albicans , Coloides , Itraconazol , Antifúngicos/farmacologia , Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Itraconazol/farmacologia , Itraconazol/administração & dosagem , Itraconazol/química , Humanos , Animais , Trichophyton/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Química Farmacêutica/métodos , Tamanho da Partícula , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/microbiologia , Absorção Cutânea/efeitos dos fármacos , Linhagem Celular , Células HaCaT , Unhas/efeitos dos fármacos , Unhas/microbiologia , Unhas/metabolismo , ArthrodermataceaeRESUMO
Ibuprofen is a member of the propionic acid class of nonsteroidal anti-inflammatory drugs (NSAIDs) with anti-inflammatory, analgesic, and antipyretic activities used to relieve a variety of pains. The objective of this study was to formulate, characterize and evaluate the in vitro and in vivo properties of ibuprofen formulated as solid lipid microspheres (SLMs) for enhanced delivery. The mixtures of Irvingia wombolu fat (IRW) and moringa oil (MO) each with Phospholipon® 90G (PL90G) at the ratio of 2:1 w/w were prepared by fusion, characterized and used to prepare SLMs. The SLMS were thereafter evaluated using the following parameters: particle size and morphology, stability, and encapsulation efficiency EE (%). In vitro release was carried out in phosphate buffer (pH 7.4). The ibuprofen based SLMs were also evaluated for anti-inflammatory and anti-ulcer effects using animal models. The pH showed significant increase after two months of formulation with a maximum value of 6.4 while the EE obtained were 95.6, 89.4 and 61.6% for SLMs formulated with lipid matrix of Phospholipon® 90G (1% and 2%), and MO (1%) respectively. The in vitro release showed maximum release of 87.8 and 98.97% of the two different lipid-based formulations while anti-inflammatory effect was up to 89.90% after 5 h of inducing inflammation. The SLMs did not show any lesion thus conferring gastroprotection on the formulations. The SLMs exhibited good anti-inflammatory property with gastroprotective action.
Assuntos
Ibuprofeno , Moringa , Animais , Ibuprofeno/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Microesferas , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , LipídeosRESUMO
PURPOSE: To assess the improvement in oral bioavailability and efficacy in systemic candidiasis treatment of miconazole nitrate (MN) formulations in murine models of candidiasis. METHODS: Selected formulations containing 5% of Softisan + Phospholipon 90H lipid matrix with 3% of MN (A 1), 5% of stearic acid + Phospholipon 90H lipid matrix with 3% of MN (B 1), and 5% Softisan + stearic acid + Phospholipon 90H with 3% of MN (C 1) from the in vitro investigation were used for the study. Their acute toxicity was assessed using Lorke's method (with slight modification) while bioavailability was determined using the bioassay method. The optimized batch (A 1) was tested in murine systemic candidiasis induced in cyclophosphamide-immunosuppressed mice. The mice were treated with a single oral dose (100 mg/kg) of the formulations for five days. Serum fungal counts (cfu/mL) were determined on days 1, 3, and 5 of the treatment period. Haematological assessments were done. RESULTS: The lipid formulations were safer than MN powder with LD50 values of 3162.8 and 1118.3 mg/kg. Bioavailability determination revealed a higher area under the curve (AUC) value for formulations A 1 (6.11 µg/hr/mL) and B 1 (4.91 µg/hr/mL) while formulation C 1 (1.80 µg/hr/mL) had a lower AUC than MN (4.46 µg/hr/mL). Fungi were completely cleared from the blood of animals treated with the optimized formulation by day 3 as opposed to the controls (MN and Tween® 20) which still had fungi on day 5. No significant increase (p > 0.05) in haematological parameters was observed in mice treated with A 1. CONCLUSION: Formulation A 1 successfully cleared Candida albicans from the blood within a shorter period than miconazole powder. This research has shown the potential of orally administered MN-loaded SRMS-based microparticles in combating systemic candidaemia.
Assuntos
Antifúngicos , Miconazol , Animais , Antifúngicos/farmacologia , Disponibilidade Biológica , Candida albicans , Candidíase , Lipídeos/farmacologia , Camundongos , Micelas , Miconazol/farmacologia , Tamanho da Partícula , PósRESUMO
BACKGROUND: Previous folkloric and experimental reports have demonstrated the antimalarial efficacy of Azadirachta indica (AZA) extracts. However, one of the major challenges facing its application for the clinical treatment of malaria is the design of an acceptable dosage form. OBJECTIVE: Consequently, we developed AZA extract-loaded nanostructured lipid carriers (NLC) for the formulation of suppositories, denoted as nanosuppositories, for intrarectal treatment of malaria. METHODS: Various batches of NLC-bearing AZA extract were formulated based on lipid matrices prepared using graded concentrations of Softisan®154 and Tetracarpidium conophorum or walnut oil. NLC was investigated by size and differential scanning calorimetry (DSC). Suppository bearing AZA extract-loaded NLC was developed using cocoa butter or theobroma oil, and their physicochemical properties were profiled. In vitro drug release and in vivo antimalarial activity (using Plasmodium berghei-infected mice) were investigated. RESULTS: NLCs exhibited sizes in nanometers ranging from 329.5 - 806.0 nm, and were amorphized as shown by DSC thermograms. Nanosuppositories were torpedo- or bullet- shaped, weighing 138 - 368 mg, softened/liquefied between 4.10 - 6.92 min, and had controlled release behaviour. In vivo antimalarial study revealed excellent antimalarial efficacy of the nanosuppositories comparable with a commercial brand (Plasmotrim®) and better than the placebo (unloaded nanosuppository), and without toxic alterations of hepatic and renal biochemical factors. CONCLUSION: Thus, AZA extract could be rationally loaded in nanostructured lipid carriers (NLC) for further development as nanosuppository and deployed as an effective alternative with optimum convenience for intrarectal treatment of malaria.
Assuntos
Antimaláricos , Azadirachta , Malária , Camundongos , Animais , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium berghei , Lipídeos/químicaRESUMO
Aim: Anterior eye segment disorders are treated with eye drops and ointments, which have low ocular bioavailability necessitating the need for improved alternatives. Lipid microsuspension of gentamicin sulphate was developed for the treatment of susceptible eye diseases. Materials & methods: Lipid microsuspensions encapsulating gentamicin sulphate were produced by hot homogenization and evaluated. Ex vivo permeation and ocular irritancy tests were also conducted. Results & conclusion: Stable microsuspensions with high entrapment efficiency and satisfactory osmolarities were obtained. Release studies achieved 49-88% in vitro release at 12 h with sustained permeability of gentamicin compared with conventional gentamicin eye drop (Evril®). No irritation was observed following Draize's test. The microsuspensions have great potential as ocular delivery system of gentamicin sulphate.
Assuntos
Olho , Gentamicinas , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Lipídeos , Soluções OftálmicasRESUMO
The use of conventional vaginal formulations of miconazole nitrate (MN) in the treatment of deep-seated VVC (vulvovaginal candidiasis) is limited by poor penetration capacity and low solubility of MN, short residence time and irritation at the application site. Surface-modified mucoadhesive microgels were developed to minimize local irritation, enhance penetration capacity and solubility and prolong localized vaginal delivery of MN for effective treatment of deep-seated VVC. Solid lipid microparticles (SLMs) were prepared from matrices consisting of hydrogenated palm oil (Softisan® 154, SF) and super-refined sunseed oil (SO) with or without polyethylene glycol (PEG)-4000, characterized for physicochemical performance and used to prepare mucoadhesive microgels (MMs) encapsulating MN, employing Polycarbophil as bioadhesive polymer. The MMs were evaluated for physicochemical performance and in vitro drug release in simulated vaginal fluid (pH=4.2), whereas mucoadhesive, rheological and stability tests, anticandidal efficacy in immunosuppressed estrogen-dependent female rats and vaginal tolerance test in rabbits were performed with optimized formulation. The amorphicity of 1:9 phytolipid blend (SO:SF) was increased in the presence of PEG-4000. The physicochemical properties of the SLMs and MMs indicated their suitability for vaginal drug delivery. Overall, MN-loaded PEGylated MMs exhibited significantly (p<0.05) more prolonged drug release than non-PEGylated MMs. Additionally, optimized PEGylated MMs was stable at 40±2°C over a period of 6months, viscoelastic, mucoadhesive, non-sensitizing, histopathologically safe and gave remarkably (p<0.05) higher reduction in Candida albicans load (86.06%) than Daktarin® (75.0%) and MN-loaded polymeric-hydrogel (47.74%) in treated rats in 12days. Thus, PEGylated MMs is promising for effective and convenient treatment of VVC.
Assuntos
Candidíase Vulvovaginal/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Miconazol/uso terapêutico , Adesividade , Administração Intravaginal , Animais , Antifúngicos/administração & dosagem , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Preparações de Ação Retardada/uso terapêutico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Concentração de Íons de Hidrogênio , Lipídeos , Miconazol/administração & dosagem , Distribuição Aleatória , RatosRESUMO
The aim of this study was to investigate the potential of microparticles based on biocompatible phytolipids [Softisan® 154 (SF) (hydrogenated palm oil) and super-refined sunseed oil (SO)] and polyethylene glycol- (PEG-) 4000 to improve intravaginal delivery of miconazole nitrate (MN) for effective treatment of vulvovaginal candidiasis (VVC). Lipid matrices (LMs) consisting of rational blends of SF and SO with or without PEG-4000 were prepared by fusion and characterized and employed to formulate MN-loaded solid lipid microparticles (SLMs) by melt-homogenization. The SLMs were characterized for physicochemical properties, anticandidal activity, and stability. Spherical discrete microparticles with good physicochemical properties and mean diameters suitable for vaginal drug delivery were obtained. Formulations based on SO:SF (1:9) and containing highest concentrations of PEG-4000 (4 %w/w) and MN (3.0 %w/w) were stable and gave highest encapsulation efficiency (83.05-87.75%) and inhibition zone diameter (25.87±0.94-26.33±0.94 mm) and significantly (p<0.05) faster and more powerful fungicidal activity regarding killing rate constant values (7.10 x 10-3-1.09 x 10-2 min-1) than commercial topical solution of MN (Fungusol®) (8.00 x 10-3 min-1) and pure MN sample (5.160 x 10-3 min-1). This study has shown that MN-loaded SLMs based on molecularly PEGylated lipid matrices could provide a better option to deal with VVC.
Assuntos
Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Miconazol/administração & dosagem , Feminino , Humanos , Tamanho da Partícula , VaginaRESUMO
BACKGROUND: The aim of this study was to formulate solidified reverse micellar solution (SRMS)-based solid lipid microparticles (SLMs) using homolipids from tallow fat (Bos indicus) and evaluate its potential for enhanced delivery of gentamicin. MATERIALS AND METHODS: SLMs were formulated by melt-emulsification using SRMS (15% w/w Phospholipon(®) 90G in 35% w/w Bos indicus), polyethylene glycol 4000 (PEG) and gentamicin (1.0, 2.0, 3.0% w/w), and characterized with respect to size, morphology, encapsulation efficiency % and pH-dependent stability. The in vitro release of gentamicin from the SLMs was performed in phosphate buffer (pH 7.4) while bioevaluation was carried out using clinical isolates of Staphylococcus aureus and Escherichia coli. RESULTS: Results showed that the lipid matrix accommodated gentamicin in a concentration-dependent manner, and that stable and spherical SLMs with size range of 18.62 ± 1.24-20.59 ± 1.36 µm and 21.35 ± 1.57-50.62 ± 2.37 µm respectively for unloaded and drug-loaded formulations were obtained. The in vitro drug release studies revealed that SRMS-based SLMs could better be used to control the release of gentamicin than gentamicin injection. Results of sensitivity test revealed that the SLMs time-dependently and capacity-limitedly produced greater inhibition zone diameters (IZDs) than the standards, an indication of improved bioactivity against the test organisms, with greater IZDs against S. aureus than E. coli. Overall, SLMs containing 2% w/w SRMS, 3% w/w gentamicin and PEG 4000 entrapped the highest amount of drug, achieved complete drug release and gave highest IZD against the organisms within 420 min, while plain gentamicin gave the least. CONCLUSION: This research has shown that SLMs based on Bos indicus and P90G is a potential carrier system for dissolution and bioactivity enhancement of gentamicin.
RESUMO
Self-nanoemulsifying formulations (SNEFs) structured with PEG 4000 as PEGylated SNEFs, were formulated after solubility studies using rational blends of soybean oil, a combination of Kolliphor(®) EL and Kolliphor(®) P188 as surfactants, and Transcutol(®) HP as co-surfactant, and evaluated for oral delivery of gentamicin. Incorporation of gentamicin and PEG 4000 reduced the initial area of nanoemulsion of the ternary phase diagrams produced by water titration method using oil, surfactant mixture and co-surfactant. Emulsion droplets were in the nanometer scale ranging from 80-210 nm. FT-IR study revealed that gentamicin structure remained intact in all formulations, and SEM micrographs showed spherical globules. Zeta potentials of SNEFs were in the range of -25.4 to -42.5 mV, and showed a stable system with minor flips in electrostatic charges. There was high in vitro diffusion-dependent permeation of gentamicin from the SNEFs. Results obtained in this work showed that oral delivery of gentamicin was improved by formulation as surface modified SNEFs.