Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Fertil Dev ; 34(2): 1-26, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35231385

RESUMO

Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.


Assuntos
Oócitos , Folículo Ovariano , Animais , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/fisiologia , Lipídeos , Oócitos/metabolismo , Folículo Ovariano/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769186

RESUMO

Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.


Assuntos
Bovinos/metabolismo , Folículo Ovariano/metabolismo , Proteínas/metabolismo , Animais , Células Cultivadas , Células do Cúmulo/química , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/química , Células da Granulosa/metabolismo , Lipoilação , Oócitos/química , Oócitos/metabolismo , Folículo Ovariano/química , Proteínas/análise , Proteômica
3.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932995

RESUMO

Lipid metabolism in ovarian follicular cells supports the preparation of an enclosed oocyte to ovulation. We aimed to compare lipid composition of a dominant large follicle (LF) and subordinated small follicles (SFs) within the same ovaries. Mass spectrometry imaging displayed the differences in the distribution of several lipid features between the different follicles. Comparison of lipid fingerprints between LF and SF by Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight (MALDI-TOF) mass spectrometry revealed that in the oocytes, only 8 out of 468 detected lipids (1.7%) significantly changed their abundance (p < 0.05, fold change > 2). In contrast, follicular fluid (FF), granulosa, theca and cumulus cells demonstrated 55.5%, 14.9%, 5.3% and 9.8% of significantly varied features between LF and SF, respectively. In total, 25.2% of differential lipids were identified and indicated potential changes in membrane and signaling lipids. Tremendous changes in FF lipid composition were likely due to the stage specific secretions from somatic follicular cells that was in line with the differences observed from FF extracellular vesicles and gene expression of candidate genes in granulosa and theca cells between LF and SF. In addition, lipid storage in granulosa and theca cells varied in relation to follicular size and atresia. Differences in follicular cells lipid profiles between LF and SF may probably reflect follicle atresia degree and/or accumulation of appropriate lipids for post-ovulation processes as formation of corpus luteum. In contrast, the enclosed oocyte seems to be protected during final follicular growth, likely due in part to significant lipid transformations in surrounding cumulus cells. Therefore, the enclosed oocyte could likely keep lipid building blocks and energy resources to support further maturation and early embryo development.


Assuntos
Líquido Folicular/metabolismo , Lipídeos/fisiologia , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Bovinos , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/metabolismo , Ovulação/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Células Tecais/metabolismo
4.
Reprod Biol Endocrinol ; 16(1): 40, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29699561

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. METHODS: The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 µM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). RESULTS: DHA (10 and 50 µM) increased granulosa cell proliferation and DHA 10 µM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 µM, and estradiol secretion at 1, 10 and 20 µM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 µM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 µM) showed no effect on progesterone or estradiol secretion. CONCLUSIONS: These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.


Assuntos
Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Células da Granulosa/efeitos dos fármacos , Animais , Feminino , Expressão Gênica , Células da Granulosa/citologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347829

RESUMO

Ovarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3⁻8 mm ovarian follicles in bovine. Using liquid chromatography and mass spectrometry (MS), 438 and 439 lipids were identified in FF and follicular cells, respectively. From the MALDI-TOF MS lipid fingerprints of FF, TH, GC, CC, and oocytes, and the MS imaging of ovarian sections, we identified 197 peaks and determined more abundant lipids in each compartment. Transcriptomics revealed lipid metabolism-related genes, which were expressed constitutively or more specifically in TH, GC, CC, or oocytes. Coupled with differential lipid composition, these data suggest that the ovarian follicle contains the metabolic machinery that is potentially capable of metabolizing FA from nutrient uptake, degrading and producing lipoproteins, performing de novo lipogenesis, and accumulating lipid reserves, thus assuring oocyte energy supply, membrane synthesis, and lipid-mediated signaling to maintain follicular homeostasis.


Assuntos
Metabolismo dos Lipídeos , Folículo Ovariano/metabolismo , Transcriptoma , Animais , Bovinos , Feminino
6.
Reprod Fertil Dev ; 29(12): 2479-2495, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28672116

RESUMO

Visfatin and resistin appear to interfere with reproduction in the gonads, but their potential action at the hypothalamic-pituitary level is not yet known. The aim of the present study was to investigate the mRNA and protein expression of these adipokines in murine gonadotroph cells and to analyse the effects of different concentrations of recombinant mouse visfatin and resistin (0.01, 0.1, 1 and 10ngmL-1) on LH secretion and signalling pathways in LßT2 cells and/or in primary female mouse pituitary cells. Both visfatin and resistin mRNA and protein were found in vivo in gonadotroph cells. In contrast with resistin, the primary tissue source of visfatin in the mouse was the skeletal muscle, and not adipose tissue. Visfatin and resistin both decreased LH secretion from LßT2 cells after 24h exposure of cells (P<0.03). These results were confirmed for resistin in primary cell culture (P<0.05). Both visfatin (1ngmL-1) and resistin (1ngmL-1) increased AMP-activated protein kinase α phosphorylation in LßT2 cells after 5 or 10min treatment, up to 60min (P<0.04). Extracellular signal-regulated kinase 1/2 phosphorylation was transiently increased only after 5min resistin (1ngmL-1) treatment (P<0.01). In conclusion, visfatin and resistin are expressed in gonadotroph cells and they may affect mouse female fertility by regulating LH secretion at the level of the pituitary.


Assuntos
Gonadotrofos/metabolismo , Hormônio Luteinizante/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Resistina/metabolismo , Transdução de Sinais/fisiologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Camundongos , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fosforilação , Resistina/genética
7.
Mol Hum Reprod ; 22(5): 338-49, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26908644

RESUMO

STUDY HYPOTHESIS: Is the c-Jun-N-terminal kinase (JNK) pathway implicated in primordial follicle activation? STUDY FINDING: Culture of ovine ovarian cortex in the presence of two different c-Jun phosphorylation inhibitors impeded pre-antral follicle activation. WHAT IS KNOWN ALREADY: Despite its importance for fertility preservation therapies, the mechanisms of primordial follicle activation are poorly understood. Amongst different signalling pathways potentially involved, the JNK pathway has been previously shown to be essential for cell cycle progression and pre-antral follicle development in mice. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Ovine ovarian cortex pieces were cultured with varying concentrations of SP600125, JNK inhibitor VIII or anti-Mullerian hormone (AMH) in the presence of FSH for 9 days. Follicular morphometry and immunohistochemistry for proliferating cell nuclear antigen (PCNA), apoptosis and follicle activation (Foxo3a) were assessed. MAIN RESULTS AND THE ROLE OF CHANCE: Inhibition of primordial follicle activation occurred in the presence of SP600125, JNK inhibitor VIII and AMH when compared with controls (all P < 0.05) after 2 days of culture. However, only in the highest concentrations used was the inhibition of activation associated with induction of follicular apoptosis (P < 0.05). In growing follicles, PCNA antigen expression was reduced when the JNK inhibitors or AMH were used (P < 0.05 versus control), indicating reduced proliferation of the somatic compartment. LIMITATIONS, REASONS FOR CAUTION: Although we evaluated the effects of inhibition of c-Jun phosphorylation on primordial follicle development, we did not determine the cellular targets and mechanism of action of the inhibitors. WIDER IMPLICATIONS OF THE FINDINGS: These results are the first to implicate the JNK pathway in primordial follicle activation and could have significant consequences for the successful development of fertility preservation strategies and our understanding of primordial follicle activation. LARGE SCALE DATA: n/a. STUDY FUNDING AND COMPETING INTERESTS: Dr Michael J. Bertoldo and the laboratories involved in the present study were supported by a grant from 'Région Centre' (CRYOVAIRE, Grant number #320000268). There are no conflicts of interest to declare.


Assuntos
Folículo Ovariano/metabolismo , Ovário/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Antracenos/farmacologia , Hormônio Antimülleriano/farmacologia , Feminino , Hormônio Foliculoestimulante/farmacologia , Folículo Ovariano/efeitos dos fármacos , Ovário/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Ovinos , Transdução de Sinais/efeitos dos fármacos
8.
J Dairy Sci ; 99(12): 10109-10127, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27692709

RESUMO

The objective of this study was to determine whether fish oil supplement has an effect on adipose tissue lipid profiles and gene expression in postpartum dairy cows. Holstein cows were supplemented with either long-chain n-3 polyunsaturated fatty acid (PUFA; protected fish oil) or control PUFA (n-6; toasted soybeans) for 2mo after calving (n=23 per diet). These cows showed no difference in milk production or metabolic parameters, but exhibited a tendency toward a decrease in early embryo mortality rate after artificial insemination. We hypothesized that, in addition to this effect, modifications in adipose tissue (AT) gene expression and lipid profiles would occur in response to diet. Subcutaneous AT samples were thus collected from the dewlaps of n-3 and n-6 dairy cows at 1mo antepartum, and 1wk, 2mo, and 5mo postpartum for the analysis of lipids and gene expression. Lipid profiles were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in both positive and negative modes. We found 37 lipid species in the 200 to 1,200 m/z range, which differed between the n-3 and control groups, suggesting that the n-3 supplement affected the lipid composition through the enrichment of lipids integrating long-chain PUFA from fish oil sources: eicosapentaenoic and docosahexaenoic acid. Moreover, a decrease in triacylglycerolipids was observed in AT of n-3 supplemented cows. The expression of 44 genes involved in fatty acid metabolism and the adipokine system was assessed by real-time reverse-transcription PCR. Hierarchical clustering, according to either postpartum stage or diet, enabled us to group genes exhibiting similar kinetic properties during lactation or by those that varied in similar ways after n-3 supplementation, respectively. Among the genes exhibiting a dietary effect, FABP4, LIPE, CD36, and PLIN1 were overexpressed in n-3 AT samples compared with the control, suggesting an increase in lipolysis due to n-3 supplementation, which was reflected on lipolytic activity at the protein level (i.e., protein expression of fatty acid binding protein 4, phosphorylated perilipin 1, and phosphorylated hormone-sensitive lipase). This increase in lipolysis is relevant to the decrease in triglycerides observed in these samples. Gene expression analyses between n-3 and control AT samples also suggested that the n-3 diet could modulate the secretory functions of AT, possibly by affecting adipokine expression; however, this has to be confirmed at the protein level.


Assuntos
Dieta/veterinária , Ácidos Graxos Ômega-3 , Tecido Adiposo/metabolismo , Animais , Bovinos , Suplementos Nutricionais , Ácidos Graxos , Feminino , Lactação , Leite/química
9.
Am J Physiol Endocrinol Metab ; 304(6): E599-613, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23321473

RESUMO

Cumulus cells (CC) surround the oocyte and are coupled metabolically through regulation of nutrient intake. CC removal before in vitro maturation (IVM) decreases bovine oocyte developmental competence without affecting nuclear meiotic maturation. The objective was to investigate the influence of CC on oocyte cytoplasmic maturation in relation to energy metabolism. IVM with either cumulus-enclosed (CEO) or -denuded (DO) oocytes was performed in serum-free metabolically optimized medium. Transmission electron microscopy revealed different distribution of membrane-bound vesicles and lipid droplets between metaphase II DO and CEO. By Nile Red staining, a significant reduction in total lipid level was evidenced in DO. Global transcriptomic analysis revealed differential expression of genes regulating energy metabolism, transcription, and translation between CEO and DO. By Western blot, fatty acid synthase (FAS) and hormone-sensitive phospholipase (HSL) proteins were detected in oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS protein was significantly less abundant in DO that in CEO and more highly expressed in CC than in the oocytes. On the contrary, HSL protein was more abundant in oocytes than in CC. In addition, active Ser56³-phosphorylated HSL was detected in the oocytes only after IVM, and its level was similar in CEO and DO. In conclusion, absence of CC during IVM affected lipid metabolism in the oocyte and led to suboptimal cytoplasmic maturation. Thus, CC may influence the oocyte by orienting the consumption of nutritive storage via regulation of local fatty acid synthesis and lipolysis to provide energy for maturation.


Assuntos
Células do Cúmulo/fisiologia , Citoplasma/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Metabolismo dos Lipídeos , Oócitos/citologia , Oócitos/metabolismo , Animais , Bovinos , Células do Cúmulo/enzimologia , Células do Cúmulo/ultraestrutura , Citoplasma/ultraestrutura , Ectogênese , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Lipogênese , Lipólise , Microscopia Eletrônica de Transmissão , Oócitos/ultraestrutura , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Serina/metabolismo , Esterol Esterase/genética , Esterol Esterase/metabolismo
10.
Mol Reprod Dev ; 80(2): 166-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23280668

RESUMO

In vitro maturation (IVM) of immature oocytes is widely used in assisted reproduction technologies in cattle, and is increasingly used to treat human infertility. The development competence of IVM oocytes, however, is lower than preovulatory, in vivo-matured oocytes. During maturation, cumulus cells (CC) are metabolically coupled with an oocyte and support the acquisition of its developmental potential. Our objective was to identify genes and pathways that were affected by IVM in bovine CC. Microarray transcriptomic analysis of CC enclosing in vitro- or in vivo-mature oocytes revealed 472 differentially expressed genes, including 28% related to apoptosis, correlating with twofold higher cell death after IVM than in vivo, as detected by TUNEL. Genes overexpressed after IVM were significantly enriched in functions involved in cell movement, focal adhesion, extracellular matrix function, and TGF-beta signaling, whereas under-expressed genes were enriched in regulating gene expression, energy metabolism, stress response, and MAP kinases pathway functions. Differential expression of 15 genes, including PAG11 (increased) and TXNIP (decreased), which were never detected in CC before, was validated by real-time RT-PCR. Moreover, protein quantification confirmed the lower abundance of glutathione S-transferase A1 and prostaglandin G/H synthase 2, and the higher abundance of hyaluronan synthase 2 and SMAD4, a member of TGF-beta pathway, in CC after IVM. Phosphorylation levels of SMAD2, MAPK3/1, and MAPK14, but not MAPK8, were higher after IVM that in vivo. In conclusion, IVM provokes the hyper-activation of TGF-beta and MAPK signaling components, modifies gene expression, leads to increased apoptosis in CC, and thus affects oocyte quality.


Assuntos
Células do Cúmulo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Animais , Apoptose/genética , Bovinos , Metabolismo Energético/genética , Perfilação da Expressão Gênica/veterinária , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Hialuronan Sintases , Marcação In Situ das Extremidades Cortadas/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Proteínas Smad/metabolismo
11.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174735

RESUMO

Centrosome formation during early development in mice and rats occurs due to the appearance of centrioles de novo. In contrast, in humans and other non-rodent mammals, centrioles are thought to be derived from spermatozoa. Ultrastructural study of zygotes and early embryos of cattle at full series of ultrathin sections show that the proximal centriole of the spermatozoon disappears by the end of the first cleavage division. Centrioles appear in two to four cell embryos in fertilized oocytes and in parthenogenetic embryos. Centriole formation includes the appearance of atypical centrioles with randomly arranged triplets and centrioles with microtubule triplets of various lengths. After the third cleavage, four centriolar cylinders appear for the first time in the blastomeres while each embryo still has two atypical centrioles. Our results showed that the mechanisms of centriole formation in different groups of mammals are universal, differing only in the stage of development in which they occur.


Assuntos
Centrossomo , Oócitos , Humanos , Masculino , Bovinos , Animais , Camundongos , Ratos , Oócitos/ultraestrutura , Centrossomo/ultraestrutura , Centríolos/ultraestrutura , Espermatozoides/ultraestrutura , Mamíferos
12.
Metabolites ; 13(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755281

RESUMO

Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.

13.
J Ovarian Res ; 16(1): 30, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737804

RESUMO

BACKGROUND: Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERß). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS: Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION: In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.


Assuntos
Células da Granulosa , Oócitos , Feminino , Ovinos , Animais , Humanos , Hormônios Esteroides Gonadais , Estradiol
14.
Environ Pollut ; 330: 121818, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182577

RESUMO

Bisphenol (BP) structural analogues of BPA are widely used. Previous studies showed similar effects of BPA and BPS on reproduction in several species including human. We hypothesised that the similar effects of several bisphenols (BPs) could accumulate in granulosa cells (GCs) and affects steroidogenesis. This study investigated the effects of seven BP analogues and their equimolar cocktail on human granulosa cells (hGC) and assessed BPA, BPS, BPF and BPAF level exposures in the follicular fluid of 277 women undergoing Assisted Reproductive Technology. The hGCs were recovered after women oocyte punctures and treated with the seven BP analogues (BPS, BPA, BPAF, BPF, BPAP, BPE and BPB) or their equimolar cocktail of 7 × 1.43 or 7 × 7.14 µM for each of the seven BPs, the sum of BPs reaching 10 ("∑BPs 10 µM"), or 50 µM ("∑BPs 50 µM"), respectively. Oestradiol and progesterone secretion, cell proliferation, viability and expression of steroidogenic enzymes were investigated. Progesterone secretion was decreased by 6 BPs 10 µM and the cocktail "∑BPs 10 µM", (-17.8 to -41.3%) and by all seven BPs 50 µM and "∑BPs 50 µM" (-21.8 to -84.2%). Oestradiol secretion was decreased only by 50 µM BPAF and BPAP (-37.8% and -44%, respectively), with corresponding decreases in CYP17A1 and CYP19A1 gene expression. Cellular proliferation was decreased after treatment with 50 µM BPAF (-32.2%), BPAP (-29%), BPB (-24%) and the equimolar cocktail "∑BPs 50 µM" (-33.1%). BPB (50 µM) and the cocktail "∑BPs 50 µM" increased HSD3B2 mRNA expression. At least one BP was detected in 64 of 277 (23.1%) women follicular fluids. Similar effects of the seven BPs or their cocktail were observed on progesterone secretion and/or on cell proliferation, suggesting cumulative effects of BPs. Our results highlight the urge to consider all BPs simultaneously and to further investigate the potential additive or synergistic effects of several BPs.


Assuntos
Compostos Benzidrílicos , Progesterona , Humanos , Feminino , Masculino , Compostos Benzidrílicos/farmacologia , Células da Granulosa , Estradiol
15.
BMC Genomics ; 13: 560, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23083410

RESUMO

BACKGROUND: Despite the known importance of somatic cells for oocyte developmental competence acquisition, the overall mechanisms underlying the acquisition of full developmental competence are far from being understood, especially in non-mammalian species. The present work aimed at identifying key molecular signals from somatic origin that would be shared by vertebrates. RESULTS: Using a parallel transcriptomic analysis in 4 vertebrate species - a teleost fish, an amphibian, and two mammals - at similar key steps of developmental competence acquisition, we identified a large number of species-specific differentially expressed genes and a surprisingly high number of orthologous genes exhibiting similar expression profiles in the 3 tetrapods and in the 4 vertebrates. Among the evolutionary conserved players participating in developmental competence acquisition are genes involved in key processes such as cellular energy metabolism, cell-to-cell communications, and meiosis control. In addition, we report many novel molecular actors from somatic origin that have never been studied in the vertebrate ovary. Interestingly, a significant number of these new players actively participate in Drosophila oogenesis. CONCLUSIONS: Our study provides a comprehensive overview of evolutionary-conserved mechanisms from somatic origin participating in oocyte developmental competence acquisition in 4 vertebrates. Together our results indicate that despite major differences in ovarian follicular structure, some of the key players from somatic origin involved in oocyte developmental competence acquisition would be shared, not only by vertebrates, but also by metazoans. The conservation of these mechanisms during vertebrate evolution further emphasizes the important contribution of the somatic compartment to oocyte quality and paves the way for future investigations aiming at better understanding what makes a good egg.


Assuntos
Evolução Biológica , Comunicação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , Oogênese/genética , Animais , Bovinos/genética , Drosophila melanogaster/genética , Metabolismo Energético/genética , Feminino , Perfilação da Expressão Gênica , Meiose/genética , Camundongos/genética , Oncorhynchus mykiss/genética , Oócitos/citologia , Especificidade da Espécie , Xenopus laevis/genética
16.
Toxics ; 10(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36006116

RESUMO

Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral follicles (180−240 µm, n = 168) with BPS (0.1 µM (possible human exposure dose) or 10 µM (high dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We measured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone [D15]) and expression of key follicular development and redox status genes (D15) in medium and whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control (−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment. More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal follicular development.

17.
Front Endocrinol (Lausanne) ; 13: 892213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685208

RESUMO

Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.


Assuntos
Disruptores Endócrinos , Animais , Disruptores Endócrinos/toxicidade , Estradiol , Feminino , Humanos , Oviductos/metabolismo , Fenóis , Progesterona/metabolismo , Ovinos , Sulfonas , Espectrometria de Massas em Tandem
18.
Reproduction ; 141(4): 467-79, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21239528

RESUMO

Resistin, initially identified in adipose tissue and macrophages, was implicated in insulin resistance. Recently, its mRNA was found in hypothalamo-pituitary axis and rat testis, leading us to hypothesize that resistin may be expressed in ovary. In this study, we determined in rats and cows 1) the characterization of resistin in ovary by RT-PCR, immunoblotting, and immunohistochemistry and 2) the effects of recombinant resistin (10, 100, 333, and 667 ng/ml) ± IGF1 (76 ng/ml) on steroidogenesis, proliferation, and signaling pathways of granulosa cells (GC) measured by enzyme immunoassay, [(3)H]thymidine incorporation, and immunoblotting respectively. We observed that resistin mRNA and protein were present in several bovine and rat ovarian cells. Nevertheless, only bovine GC abundantly expressed resistin mRNA and protein. Resistin treatment decreased basal but not IGF1-induced progesterone (P<0.05; whatever the dose) and estradiol (P<0.005; for 10 and 333 ng/ml) production by bovine GC. In rats, resistin (10 ng/ml) increased basal and IGF1-induced progesterone secretion (P<0.0001), without effect on estradiol release. We found no effect of resistin on rat GC proliferation. Conversely, in cows, resistin increased basal proliferation (P<0.0001; for 100-667 ng/ml) and decreased IGF1-induced proliferation of GC (P<0.0001; for 10-333 ng/ml) associated with a decrease in cyclin D2 protein level (P<0.0001). Finally, resistin stimulated AKT and p38-MAPK phosphorylation in both species, ERK1/2-MAPK phosphorylation in rats and had the opposite effect on the AMPK pathway (P<0.05). In conclusion, our results show that resistin is expressed in rat and bovine ovaries. Furthermore, it can modulate GC functions in basal state or in response to IGF1 in vitro.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Resistina/metabolismo , Resistina/farmacologia , Esteroides/biossíntese , Animais , Bovinos , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Gonadotropinas Equinas/farmacologia , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Imuno-Histoquímica , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ratos , Ratos Wistar , Resistina/fisiologia
19.
Reproduction ; 142(4): 517-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21757473

RESUMO

The aim of this study was to test the Brilliant Cresyl Blue (BCB) stain to select prepubertal sheep oocytes for in vitro blastocyst production. Oocyte diameter, mitochondrial activity, maturation-promoting factor (MPF) activity and mRNA relative expression (RE) of genes related to metabolism (ATPase Na(+)/K(+) transporting α 1 (ATP1A1) and cytochrome c oxidase subunit 1 (COX1)) and constitutive function of the cell (cytoplasmic polyadenylation-element-binding protein (CPEB) and S100A10) were assessed. Immature oocytes were exposed to different BCB concentrations (13, 26, 39 and 52  µM) and classified according to their cytoplasm colouration as grown BCB+ (blue cytoplasm) and growing BCB- (colourless cytoplasm). Staining oocytes with 13  µM BCB during 60  min allows selection of (BCB+) the largest (123.66  µm) and most competent oocytes to develop to the blastocyst stage (21%) with a higher number of cells (69.71 ± 6.19 s.e.m.) compared with non-stained BCB- oocytes (106.82  µm, 9% and 45.91 ± 3.35 s.e.m. respectively). Mitochondrial activity, assessed by MitoTracker Orange CMTMRos probe, was significantly higher in BCB+ than in BCB- oocytes after in vitro maturation (3369 and 1565  AU respectively). MPF activity was assessed by CDC2 kinase activity assay showing significantly higher activity at metaphase II stage in BCB+ than in BCB- oocytes (1.479 ± 0.09 and 1.184 ± 0.05 optical density respectively). The genes analysed in this work, ATP1A1, COX1, CPEB and S100A 10, did not show significant effect in mRNA RE between BCB selected oocytes. In conclusion, BCB stains larger and more competent oocytes to develop to the blastocyst stage with more active mitochondria and MPF activity and higher blastocyst cell number.


Assuntos
Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/fisiologia , Fator Promotor de Maturação/fisiologia , Mitocôndrias/fisiologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oxazinas/farmacologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Células Cultivadas , Corantes/farmacologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Técnicas In Vitro , Fator Promotor de Maturação/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Animais , Maturidade Sexual/fisiologia , Ovinos
20.
Reprod Biol Endocrinol ; 8: 23, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20219117

RESUMO

BACKGROUND: Adiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor) in bovine ovary and its role on ovarian cells and embryo, remain however to be determined. METHODS: Here, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL) on proliferation of granulosa cells (GC) measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development. RESULTS: We show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum) and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8) M-induced GC proliferation (P < 0.01) but not basal or insulin 10(-8) M-induced proliferation. Additionally, adiponectin decreased insulin 10(-8) M-induced, but not basal or IGF-1 10(-8) M-induced secretions of progesterone (P < 0.01) and estradiol (P < 0.05) by GC. This decrease in insulin-induced steroidogenesis was associated with a decrease in ERK1/2 MAPK phosphorylation in GC pre-treated with adiponectin. Finally, addition of adiponectin during in vitro maturation affected neither the percentage of oocyte in metaphase-II nor 48-h cleavage and blastocyst day 8 rates. CONCLUSIONS: In bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Esteroides/biossíntese , Adiponectina/farmacologia , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Feminino , Células da Granulosa/metabolismo , Humanos , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA