Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511514

RESUMO

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

2.
Mov Disord ; 38(3): 479-484, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592065

RESUMO

BACKGROUND: The locus coeruleus/subcoeruleus complex (LC/LsC) is a structure comprising melanized noradrenergic neurons. OBJECTIVE: To study the LC/LsC damage across Parkinson's disease (PD) and atypical parkinsonism in a large group of subjects. METHODS: We studied 98 healthy control subjects, 47 patients with isolated rapid eye movement sleep behavior disorder (RBD), 75 patients with PD plus RBD, 142 patients with PD without RBD, 19 patients with progressive supranuclear palsy (PSP), and 19 patients with multiple system atrophy (MSA). Twelve patients with MSA had proven RBD. LC/LsC signal intensity was derived from neuromelanin magnetic resonance imaging using automated software. RESULTS: The signal intensity was reduced in all parkinsonian syndromes compared with healthy control subjects, except in PD without RBD. The signal intensity decreased as age increased. Moreover, the signal intensity was lower in MSA than in isolated RBD and PD without RBD groups. In PD, the signal intensity correlated negatively with the percentage of REM sleep without atonia. There were no differences in signal intensity between PD plus RBD, PSP, and MSA. CONCLUSIONS: Neuromelanin signal intensity was reduced in all parkinsonian disorders, except in PD without RBD. The presence of RBD in parkinsonian disorders appears to be associated with lower neuromelanin signal intensity. Furthermore, lower LC/LsC signal changes in PSP could be partly caused by the effect of age. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Transtornos Parkinsonianos/complicações , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Paralisia Supranuclear Progressiva/patologia , Atrofia de Múltiplos Sistemas/patologia , Imageamento por Ressonância Magnética/métodos
3.
Mov Disord ; 38(7): 1187-1196, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148555

RESUMO

BACKGROUND: Cervical dystonia (CD) is a form of isolated focal dystonia typically associated to abnormal head, neck, and shoulder movements and postures. The complexity of the clinical presentation limits the investigation of its pathophysiological mechanisms, and the neural networks associated to specific motor manifestations are still the object of debate. OBJECTIVES: We investigated the morphometric properties of white matter fibers in CD and explored the networks associated with motor symptoms, while regressing out nonmotor scores. METHODS: Nineteen patients affected by CD and 21 healthy controls underwent diffusion-weighted magnetic resonance imaging. We performed fixel-based analysis, a novel method evaluating fiber orientation within specific fiber bundles, and compared fiber morphometric properties between groups. Moreover, we correlated fiber morphometry with the severity of motor symptoms in patients. RESULTS: Compared to controls, patients exhibited decreased white matter fibers in the right striatum. Motor symptom severity negatively correlated with white matter fibers passing through inferior parietal areas and the head representation area of the motor cortex. CONCLUSIONS: Abnormal white matter integrity at the basal ganglia level may affect several functional networks involved, for instance, in motor preparation and execution, visuomotor coordination, and multimodal integration. This may result in progressive maladaptive plasticity, culminating in overt symptoms of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Torcicolo , Substância Branca , Humanos , Torcicolo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo , Distúrbios Distônicos/diagnóstico por imagem
4.
Mov Disord ; 37(5): 1064-1069, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102604

RESUMO

BACKGROUND: Isolated REM sleep behavior disorder (iRBD) is considered a prodromal stage of parkinsonism. Neurodegenerative changes in the substantia nigra pars compacta (SNc) in parkinsonism can be detected using neuromelanin-sensitive MRI. OBJECTIVE: To investigate SNc neuromelanin changes in iRBD patients using fully automatic segmentation. METHODS: We included 47 iRBD patients, 134 early Parkinson's disease (PD) patients and 55 healthy volunteers (HVs) scanned at 3 Tesla. SNc regions-of-interest were delineated automatically using convolutional neural network. SNc volumes, volumes corrected by total intracranial volume, signal-to-noise ratio (SNR) and contrast-to-noise ratio were computed. One-way general linear models (GLM) analysis of covariance (ANCOVA) was conducted while adjusting for age and sex. RESULTS: All SNc measurements differed significantly between the three groups (except SNR in iRBD). Changes in iRBD were intermediate between those in PD and HVs. CONCLUSIONS: Using fully automated SNc segmentation method and neuromelanin-sensitive imaging, iRBD patients showed neurodegenerative changes in the SNc at a lower level than in PD patients. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Aprendizado Profundo , Doença de Parkinson , Transtornos Parkinsonianos , Transtorno do Comportamento do Sono REM , Humanos , Imageamento por Ressonância Magnética/métodos , Melaninas , Doença de Parkinson/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Substância Negra/diagnóstico por imagem
5.
Mov Disord ; 37(6): 1245-1255, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35347754

RESUMO

BACKGROUND: Neurodegeneration in the substantia nigra pars compacta (SNc) in parkinsonian syndromes may affect the nigral territories differently. OBJECTIVE: The objective of this study was to investigate the regional selectivity of neurodegenerative changes in the SNc in patients with Parkinson's disease (PD) and atypical parkinsonism using neuromelanin-sensitive magnetic resonance imaging (MRI). METHODS: A total of 22 healthy controls (HC), 38 patients with PD, 22 patients with progressive supranuclear palsy (PSP), 20 patients with multiple system atrophy (MSA, 13 with the parkinsonian variant, 7 with the cerebellar variant), 7 patients with dementia with Lewy body (DLB), and 4 patients with corticobasal syndrome were analyzed. volume and signal-to-noise ratio (SNR) values of the SNc were derived from neuromelanin-sensitive MRI in the whole SNc. Analysis of signal changes was performed in the sensorimotor, associative, and limbic territories of the SNc. RESULTS: SNc volume and corrected volume were significantly reduced in PD, PSP, and MSA versus HC. Patients with PSP had lower volume, corrected volume, SNR, and contrast-to-noise ratio than HC and patients with PD and MSA. Patients with PSP had greater SNR reduction in the associative region than HC and patients with PD and MSA. Patients with PD had reduced SNR in the sensorimotor territory, unlike patients with PSP. Patients with MSA did not differ from patients with PD. CONCLUSIONS: This study provides the first MRI comparison of the topography of neuromelanin changes in parkinsonism. The spatial pattern of changes differed between PSP and synucleinopathies. These nigral topographical differences are consistent with the topography of the extranigral involvement in parkinsonian syndromes. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Imageamento por Ressonância Magnética/métodos , Melaninas , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia
6.
Mol Psychiatry ; 26(7): 3548-3557, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32994553

RESUMO

Tourette disorder (TD), which is characterized by motor and vocal tics, is not in general considered as a product of impulsivity, despite a frequent association with attention deficit hyperactivity disorder and impulse control disorders. It is unclear which type of impulsivity, if any, is intrinsically related to TD and specifically to the severity of tics. The waiting type of motor impulsivity, defined as the difficulty to withhold a specific action, shares some common features with tics. In a large group of adult TD patients compared to healthy controls, we assessed waiting motor impulsivity using a behavioral task, as well as structural and functional underpinnings of waiting impulsivity and tics using multi-modal neuroimaging protocol. We found that unmedicated TD patients showed increased waiting impulsivity compared to controls, which was independent of comorbid conditions, but correlated with the severity of tics. Tic severity did not account directly for waiting impulsivity, but this effect was mediated by connectivity between the right orbito-frontal cortex with caudate nucleus bilaterally. Waiting impulsivity in unmedicated patients with TD also correlated with a higher gray matter signal in deep limbic structures, as well as connectivity with cortical and with cerebellar regions on a functional level. Neither behavioral performance nor structural or functional correlates were related to a psychometric measure of impulsivity or impulsive behaviors in general. Overall, the results suggest that waiting impulsivity in TD was related to tic severity, to functional connectivity of orbito-frontal cortex with caudate nucleus and to structural changes within limbic areas.


Assuntos
Transtornos de Tique , Tiques , Síndrome de Tourette , Adulto , Humanos , Comportamento Impulsivo , Redes Neurais de Computação
7.
Brain ; 144(10): 3114-3125, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33978742

RESUMO

In Parkinson's disease, there is a progressive reduction in striatal dopaminergic function, and loss of neuromelanin-containing dopaminergic neurons and increased iron deposition in the substantia nigra. We tested the hypothesis of a relationship between impairment of the dopaminergic system and changes in the iron metabolism. Based on imaging data of patients with prodromal and early clinical Parkinson's disease, we assessed the spatiotemporal ordering of such changes and relationships in the sensorimotor, associative and limbic territories of the nigrostriatal system. Patients with Parkinson's disease (disease duration < 4 years) or idiopathic REM sleep behaviour disorder (a prodromal form of Parkinson's disease) and healthy controls underwent longitudinal examination (baseline and 2-year follow-up). Neuromelanin and iron sensitive MRI and dopamine transporter single-photon emission tomography were performed to assess nigrostriatal levels of neuromelanin, iron, and dopamine. For all three functional territories of the nigrostriatal system, in the clinically most and least affected hemispheres separately, the following was performed: cross-sectional and longitudinal intergroup difference analysis of striatal dopamine and iron, and nigral neuromelanin and iron; in Parkinson's disease patients, exponential fitting analysis to assess the duration of the prodromal phase and the temporal ordering of changes in dopamine, neuromelanin or iron relative to controls; and voxel-wise correlation analysis to investigate concomitant spatial changes in dopamine-iron, dopamine-neuromelanin and neuromelanin-iron in the substantia nigra pars compacta. The temporal ordering of dopaminergic changes followed the known spatial pattern of progression involving first the sensorimotor, then the associative and limbic striatal and nigral regions. Striatal dopaminergic denervation occurred first followed by abnormal iron metabolism and finally neuromelanin changes in the substantia nigra pars compacta, which followed the same spatial and temporal gradient observed in the striatum but shifted in time. In conclusion, dopaminergic striatal dysfunction and cell loss in the substantia nigra pars compacta are interrelated with increased nigral iron content.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Ferro/metabolismo , Melaninas/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Idoso , Estudos de Coortes , Corpo Estriado/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Estudos Prospectivos , Substância Negra/diagnóstico por imagem , Fatores de Tempo
8.
Mov Disord ; 36(7): 1592-1602, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33751655

RESUMO

BACKGROUND: Development of reliable and accurate imaging biomarkers of dopaminergic cell neurodegeneration is necessary to facilitate therapeutic drug trials in Parkinson's disease (PD). Neuromelanin-sensitive MRI techniques have been effective in detecting neurodegeneration in the substantia nigra pars compacta (SNpc). The objective of the current study was to investigate longitudinal neuromelanin signal changes in the SNpc in PD patients. METHODS: In this prospective, longitudinal, observational case-control study, we included 140 PD patients and 64 healthy volunteers divided into 2 cohorts. Cohort I included 99 early PD patients (disease duration, 1.5 ± 1.0 years) and 41 healthy volunteers analyzed at baseline (V1), where 79 PD patients and 32 healthy volunteers were rescanned after 2.0 ± 0.2 years of follow-up (V2). Cohort II included 41 progressing PD patients (disease duration, 9.3 ± 3.7 years) and 23 healthy volunteers at V1, where 30 PD patients were rescanned after 2.4 ± 0.5 years of follow-up. Subjects were scanned at 3 T MRI using 3-dimensional T1-weighted and neuromelanin-sensitive imaging. Regions of interest were delineated manually to calculate SN volumes, volumes corrected by total intracranial volume, signal-to-noise ratio, and contrast-to-noise ratio. RESULTS: Results showed (1) significant reduction in volume and volume corrected by total intracranial volume between visits, greater in progressing PD than nonsignificant changes in healthy volunteers; (2) no significant effects of visit for signal intensity (signal-to-noise ratio); (3) significant interaction in volume between group and visit; (4) greater volume corrected by total intracranial volume at baseline in female patients and greater decrease in volume and increase in the contrast-to-noise ratio in progressing female PD patients compared with male patients; and (5) correlations between neuromelanin SN changes and disease severity and duration. CONCLUSIONS: We observed a progressive and measurable decrease in neuromelanin-based SN signal and volume in PD, which might allow a direct noninvasive assessment of progression of SN loss and could represent a target biomarker for disease-modifying treatments. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Melaninas , Doença de Parkinson/diagnóstico por imagem , Estudos Prospectivos , Substância Negra/diagnóstico por imagem
9.
Mov Disord ; 36(2): 460-470, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33137232

RESUMO

BACKGROUND: Machine learning algorithms using magnetic resonance imaging (MRI) data can accurately discriminate parkinsonian syndromes. Validation in patients recruited in routine clinical practice is missing. OBJECTIVE: The aim of this study was to assess the accuracy of a machine learning algorithm trained on a research cohort and tested on an independent clinical replication cohort for the categorization of parkinsonian syndromes. METHODS: Three hundred twenty-two subjects, including 94 healthy control subjects, 119 patients with Parkinson's disease (PD), 51 patients with progressive supranuclear palsy (PSP) with Richardson's syndrome, 35 with multiple system atrophy (MSA) of the parkinsonian variant (MSA-P), and 23 with MSA of the cerebellar variant (MSA-C), were recruited. They were divided into a training cohort (n = 179) scanned in a research environment and a replication cohort (n = 143) examined in clinical practice on different MRI systems. Volumes and diffusion tensor imaging (DTI) metrics in 13 brain regions were used as input for a supervised machine learning algorithm. To harmonize data across scanners and reduce scanner-dependent effects, we tested two types of normalizations using patient data or healthy control data. RESULTS: In the replication cohort, high accuracies were achieved using volumetry in the classification of PD-PSP, PD-MSA-C, PSP-MSA-C, and PD-atypical parkinsonism (balanced accuracies: 0.840-0.983, area under the receiver operating characteristic curves: 0.907-0.995). Performances were lower for the classification of PD-MSA-P, MSA-C-MSA-P (balanced accuracies: 0.765-0.784, area under the receiver operating characteristic curve: 0.839-0.871) and PD-PSP-MSA (balanced accuracies: 0.773). Performance using DTI was improved when normalizing by controls, but remained lower than that using volumetry alone or combined with DTI. CONCLUSIONS: A machine learning approach based on volumetry enabled accurate classification of subjects with early-stage parkinsonism, examined on different MRI systems, as part of their clinical assessment. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem
10.
Brain ; 143(9): 2757-2770, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32856056

RESUMO

This study aimed to investigate the spatiotemporal changes in neuromelanin-sensitive MRI signal in the substantia nigra and their relation to clinical scores of disease severity in patients with early or progressing Parkinson's disease and patients with idiopathic rapid eye movement sleep behaviour disorder (iRBD) exempt of Parkinsonian signs compared to healthy control subjects. Longitudinal T1-weighted anatomical and neuromelanin-sensitive MRI was performed in two cohorts, including patients with iRBD, patients with early or progressing Parkinson's disease, and control subjects. Based on the aligned substantia nigra segmentations using a study-specific brain anatomical template, parametric maps of the probability of a voxel belonging to the substantia nigra were calculated for patients with various degrees of disease severity and controls. For each voxel in the substantia nigra, probability map of controls, correlations between signal-to-noise ratios on neuromelanin-sensitive MRI in patients with iRBD and Parkinson's disease and clinical scores of motor disability, cognition and mood/behaviour were calculated. Our results showed that in patients, compared to the healthy control subjects, the volume of the substantia nigra was progressively reduced for increasing disease severity. The neuromelanin signal changes appeared to start in the posterolateral motor areas of the substantia nigra and then progressed to more medial areas of this region. The ratio between the volume of the substantia nigra in patients with Parkinson's disease relative to the controls was best fitted by a mono-exponential decay. Based on this model, the pre-symptomatic phase of the disease started at 5.3 years before disease diagnosis, and 23.1% of the substantia nigra volume was lost at the time of diagnosis, which was in line with previous findings using post-mortem histology of the human substantia nigra and radiotracer studies of the human striatum. Voxel-wise patterns of correlation between neuromelanin-sensitive MRI signal-to-noise ratio and motor, cognitive and mood/behavioural clinical scores were localized in distinct regions of the substantia nigra. This localization reflected the functional organization of the nigrostriatal system observed in histological and electrophysiological studies in non-human primates (motor, cognitive and mood/behavioural domains). In conclusion, neuromelanin-sensitive MRI enabled us to assess voxel-wise modifications of substantia nigra's morphology in vivo in humans, including healthy controls, patients with iRBD and patients with Parkinson's disease, and identify their correlation with nigral function across all motor, cognitive and behavioural domains. This insight could help assess disease progression in drug trials of disease modification.


Assuntos
Imageamento por Ressonância Magnética/tendências , Melaninas/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Idoso , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/metabolismo , Fatores de Tempo
11.
Neuroimage ; 204: 116236, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31597085

RESUMO

BACKGROUND: Transcranial focus ultrasound applications applied under MRI-guidance benefit from unrivaled monitoring capabilities, allowing the recording of real-time anatomical information and biomarkers like the temperature rise and/or displacement induced by the acoustic radiation force. Having both of these measurements could allow for better targeting of brain structures, with improved therapy monitoring and safety. METHOD: We investigated the use of a novel MRI-pulse sequence described previously in Bour et al., (2017) to quantify both the displacement and temperature changes under various ultrasound sonication conditions and in different regions of the brain. The method was evaluated in vivo in a non-human primate under anesthesia using a single-element transducer (f = 850 kHz) in a setting that could mimic clinical applications. Acquisition was performed at 3 T on a clinical imaging system using a modified single-shot gradient echo EPI sequence integrating a bipolar motion-sensitive encoding gradient. Four slices were acquired sequentially perpendicularly or axially to the direction of the ultrasound beam with a 1-Hz update frequency and an isotropic spatial resolution of 2-mm. A total of twenty-four acquisitions were performed in three different sets of experiments. Measurement uncertainty of the sequence was investigated under different acoustic power deposition and in different regions of the brain. Acoustic simulation and thermal modeling were performed and compared to experimental data. RESULTS: The sequence simultaneously provides relevant information about the focal spot location and visualization of heating of brain structures: 1) The sequence localized the acoustic focus both along as well as perpendicular to the ultrasound direction. Tissue displacements ranged from 1 to 2 µm. 2) Thermal rise was only observed at the vicinity of the skull. Temperature increase ranged between 1 and 2 °C and was observed delayed relative the sonication due to thermal diffusion. 3) The fast frame rate imaging was able to highlight magnetic susceptibility artifacts related to breathing, for the most caudal slices. We demonstrated that respiratory triggering successfully restored the sensitivity of the method (from 0.7 µm to 0.2 µm). 4) These results were corroborated by acoustic simulations. CONCLUSIONS: The current rapid, multi-slice acquisition and real-time implementation of temperature and displacement visualization may be useful in clinical practices. It may help defining operational safety margins, improving therapy precision and efficacy. Simulations were in good agreement with experimental data and may thus be used prior treatment for procedure planning.


Assuntos
Temperatura Corporal/fisiologia , Imagem Ecoplanar/métodos , Neuroimagem/métodos , Termometria/métodos , Terapia por Ultrassom , Animais , Encéfalo , Simulação por Computador , Macaca mulatta
12.
Hum Brain Mapp ; 41(11): 2926-2950, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243676

RESUMO

White matter bundles linking gray matter nodes are key anatomical players to fully characterize associations between brain systems and cognitive functions. Here we used a multivariate lesion inference approach grounded in coalitional game theory (multiperturbation Shapley value analysis, MSA) to infer causal contributions of white matter bundles to visuospatial orienting of attention. Our work is based on the characterization of the lesion patterns of 25 right hemisphere stroke patients and the causal analysis of their impact on three neuropsychological tasks: line bisection, letter cancellation, and bells cancellation. We report that, out of the 11 white matter bundles included in our MSA coalitions, the optic radiations, the inferior fronto-occipital fasciculus and the anterior cingulum were the only tracts to display task-invariant contributions (positive, positive, and negative, respectively) to the tasks. We also report task-dependent influences for the branches of the superior longitudinal fasciculus and the posterior cingulum. By extending prior findings to white matter tracts linking key gray matter nodes, we further characterize from a network perspective the anatomical basis of visual and attentional orienting processes. The knowledge about interactions patterns mediated by white matter tracts linking cortical nodes of attention orienting networks, consolidated by further studies, may help develop and customize brain stimulation approaches for the rehabilitation of visuospatial neglect.


Assuntos
Atenção/fisiologia , Córtex Cerebral/patologia , Substância Cinzenta/patologia , Acidente Vascular Cerebral Hemorrágico , AVC Isquêmico , Rede Nervosa/patologia , Neuroimagem , Transtornos da Percepção , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Substância Branca/patologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Teoria dos Jogos , Substância Cinzenta/diagnóstico por imagem , Acidente Vascular Cerebral Hemorrágico/complicações , Acidente Vascular Cerebral Hemorrágico/diagnóstico por imagem , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/fisiopatologia , Humanos , AVC Isquêmico/complicações , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Neuroimagem/métodos , Transtornos da Percepção/diagnóstico por imagem , Transtornos da Percepção/etiologia , Transtornos da Percepção/patologia , Transtornos da Percepção/fisiopatologia , Substância Branca/diagnóstico por imagem
13.
Magn Reson Med ; 84(6): 3286-3299, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32618387

RESUMO

PURPOSE: Performing simultaneous quantitative MRI at ultrahigh field is challenging, as B0 and B1+ heterogeneities as well as specific absorption rate increase. Too large deviations of flip angle from the target can induce biases and impair SNR in the quantification process. In this work, we use calibration-free parallel transmission, a dedicated pulse-sequence parameter optimization and signal fitting to recover 3D proton density, flip angle, T1 , and T2 maps over the whole brain, in a clinically suitable time. METHODS: Eleven optimized contrasts were acquired with an unbalanced SSFP sequence by varying flip-angle amplitude and RF phase-cycling increment, at a 1.0 × 1.0 × 3.0 mm3 resolution. Acquisition time was 16 minutes 36 seconds for the whole brain. Parallel transmission and universal pulses were used to mitigate B1+ heterogeneity, to improve the results' reliability over 6 healthy volunteers (3 females/3 males, age 22.6 ± 2.7 years old). Quantification of the physical parameters was performed by fitting the acquired contrasts to the simulated ones using the Bloch-Torrey equations with a realistic diffusion coefficient. RESULTS: Whole-brain 3D maps of effective flip angle, proton density, and relaxation times were estimated. Parallel transmission improved the robustness of the results at 7 T. Results were in accordance with literature and with measurements from standard methods. CONCLUSION: These preliminary results show robust proton density, flip angle, T1 , and T2 map retrieval. Other parameters, such as ADC, could be assessed. With further optimization in the acquisition, scan time could be reduced and spatial resolution increased to bring this multiparametric quantification method to clinical research routine at 7 T.


Assuntos
Processamento de Imagem Assistida por Computador , Prótons , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes , Adulto Jovem
14.
Mov Disord ; 35(1): 161-170, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710146

RESUMO

BACKGROUND: Progressive supranuclear palsy (PSP) is a neurodegenerative clinically heterogeneous disorder, formal diagnosis being based on postmortem histological brain examination. OBJECTIVE: We aimed to perform a precise in vivo staging of neurodegeneration in PSP using quantitative multimodal MRI. The ability of MRI biomarkers to differentiate PSP from PD was also evaluated. METHODS: Eleven PSP patients were compared to 26 age-matched healthy controls and 51 PD patients. Images were acquired at 3 Tesla (three-dimensional T1 -weighted, diffusion tensor, and neuromelanin-sensitive images) and 7 Tesla (three-dimensional-T2 * images). Regions of interest included the cortical areas, hippocampus, amygdala, basal ganglia, basal forebrain, brainstem nuclei, dentate nucleus, and cerebellum. Volumes, mean diffusivity, and fractional anisotropy were measured. In each region, a threshold value for group categorization was calculated, and four grades of change (0-3) were determined. RESULTS: PSP patients showed extensive volume decreases and diffusion changes in the midbrain, SN, STN, globus pallidus, basal forebrain, locus coeruleus, pedunculopontine nucleus, and dentate nucleus, in close agreement with the degrees of impairment in histological analyses. The predictive factors for the separation of PSP and healthy controls were, in descending order, the neuromelanin-based SN volume; midbrain fractional anisotropy; volumes of the midbrain, globus pallidus, and putamen; and fractional anisotropy in the locus coeruleus. The best predictors for separating PSP from PD were the neuromelanin-based volume in the SN, fractional anisotropy in the pons, volumes of the midbrain and globus pallidus, and fractional anisotropy in the basal forebrain. CONCLUSIONS: These results suggest that it is possible to evaluate brain neurodegeneration in PSP noninvasively, even in small brainstem nuclei, in close agreement with previously published histological data. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Atrofia de Múltiplos Sistemas/patologia , Paralisia Supranuclear Progressiva/patologia , Idoso , Gânglios da Base/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Mesencéfalo/patologia , Pessoa de Meia-Idade , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia
15.
Mov Disord ; 35(1): 151-160, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571302

RESUMO

BACKGROUND: Abnormal sensory processing, including temporal discrimination threshold, has been described in various dystonic syndromes. OBJECTIVE: To investigate visual sensory processing in DYT-SGCE and identify its structural correlates. METHODS: DYT-SGCE patients without DBS (DYT-SGCE-non-DBS) and with DBS (DYT-SGCE-DBS) were compared to healthy volunteers in three tasks: a temporal discrimination threshold, a movement orientation discrimination, and movement speed discrimination. Response times attributed to accumulation of sensory visual information were computationally modelized, with µ parameter indicating sensory mean growth rate. We also identified the structural correlates of behavioral performance for temporal discrimination threshold. RESULTS: Twenty-four DYT-SGCE-non-DBS, 13 DYT-SGCE-DBS, and 25 healthy volunteers were included in the study. In DYT-SGCE-DBS, the discrimination threshold was higher in the temporal discrimination threshold (P = 0.024), with no difference among the groups in other tasks. The sensory mean growth rate (µ) was lower in DYT-SGCE in all three tasks (P < 0.01), reflecting a slower rate of sensory accumulation for the visual information in these patients independent of DBS. Structural imaging analysis showed a thicker left primary visual cortex (P = 0.001) in DYT-SGCE-non-DBS compared to healthy volunteers, which also correlated with lower µ in temporal discrimination threshold (P = 0.029). In DYT-SGCE-non-DBS, myoclonus severity also correlated with a lower µ in the temporal discrimination threshold task (P = 0.048) and with thicker V1 on the left (P = 0.022). CONCLUSION: In DYT-SGCE, we showed an alteration of the visual sensory processing in the temporal discrimination threshold that correlated with myoclonus severity and structural changes in the primary visual cortex. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Movimento/fisiologia , Percepção Visual/fisiologia , Adulto , Distúrbios Distônicos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/patologia , Mioclonia/patologia , Mioclonia/fisiopatologia
16.
Stroke ; 50(8): 2050-2056, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31272324

RESUMO

Background and Purpose- Early severity of stroke symptoms-especially in mild-to-severe stroke patients-are imperfect predictors of long-term motor and aphasia outcome. Motor function and language processing heavily rely on the preservation of important white matter fasciculi in the brain. Axial diffusivity (AD) from the diffusion tensor imaging model has repeatedly shown to accurately reflect acute axonal damage and is thus optimal to probe the integrity of important white matter bundles and their relationship with long-term outcome. Our aim was to investigate the independent prognostic value of the AD of white matter tracts in the motor and language network evaluated at 24 hours poststroke for motor and aphasia outcome at 3 months poststroke. Methods- Seventeen (motor cohort) and 28 (aphasia cohort) thrombolyzed patients with initial mild-to-severe stroke underwent a diffusion tensor imaging sequence at 24 hours poststroke. Motor and language outcome were evaluated at 3 months poststroke with a composite motor score and the aphasia handicap scale. We first used stepwise regression to determine which classic (age, initial motor or aphasia severity, and lesion volume) and imaging (ratio of affected/unaffected AD of motor and language fasciculi) factors were related to outcome. Second, to determine the specificity of our a priori choices of fasciculi, we performed voxel-based analyses to determine if the same, additional, or altogether new regions were associated with long-term outcome. Results- The ratio of AD in the corticospinal tract was the sole predictor of long-term motor outcome, and the ratio of AD in the arcuate fasciculus-along with age and initial aphasia severity-was an independent predictor of 3-month aphasia outcome. White matter regions overlapping with these fasciculi naturally emerged in the corresponding voxel-based analyses. Conclusions- AD of the corticospinal tract and arcuate fasciculus are effective biomarkers of long-term motor and aphasia outcome, respectively.


Assuntos
Afasia/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Transtornos Motores/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Idoso , Afasia/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Motores/etiologia , Tratos Piramidais/patologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações
17.
Stroke ; 50(12): 3647-3649, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31645211

RESUMO

Background and Purpose- Many studies have attempted to bring to light the neural correlates of poststroke motor impairment, but few have used multimodal approach to explain it. The aim of this study was to elucidate neural structural and functional correlates of upper limb motor impairment by combining electrophysiological, anatomic, and functional neuroimaging data. Methods- Forty ischemic stroke patients (median [min-max] age: 63 [33-82] years, time poststroke: 3.5 [1.1-58] months) with unilateral upper limb weakness were included. The upper limb motor impairment was defined by a motor composite score. Simple linear analysis followed by multiple linear regression analysis were performed to identify which variables (corticospinal excitability, laterality indices within the primary motor cortex or corticospinal [CST], and corpus callosum tracts integrity) were the best explaining factors of upper limb motor impairment. Results- There was a significant correlation between the resting motor threshold ratio and CST damage (r= -0.50 [95% CI, -0.70 to -0.22]; P<0.001) as well as the motor-evoked potentials amplitude (r= -0.73 [95% CI, -0.85 to -0.54]; P<0.001). Only the resting motor threshold ratio was retained by the multiple regression model and explained half of the variance (49%; P<0.001) of the upper limb motor impairment after stroke. Conclusions- The implementation of quantitative neurophysiological measurements such as the resting motor threshold as a surrogate marker of impairment could be considered in neurorehabilitation trials.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Potencial Evocado Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Extremidade Superior/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/fisiopatologia , Imagem de Tensor de Difusão , Feminino , Neuroimagem Funcional , Força da Mão , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Estimulação Magnética Transcraniana
18.
Hum Brain Mapp ; 40(7): 2125-2142, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30653778

RESUMO

The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.


Assuntos
Lateralidade Funcional/fisiologia , Intenção , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Potencial Evocado Motor/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
19.
Mov Disord ; 34(4): 516-525, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536444

RESUMO

BACKGROUND: Cognitive deficits in Parkinson's disease (PD) may result from damage in the cortex as well as in the dopaminergic, noradrenergic, and cholinergic inputs to the cortex. Cholinergic inputs to the cortex mainly originate from the basal forebrain and are clustered in several regions, called Ch1 to Ch4, that project to the hippocampus (Ch1-2), the olfactory bulb (Ch3), and the cortex and amygdala (Ch4). OBJECTIVE: We investigated changes in basal forebrain and their role in cognitive deficits in PD. METHODS: We studied 52 nondemented patients with PD (Hoehn & Yahr 1-2) and 25 age-matched healthy controls using diffusion and resting state functional MRI. RESULTS: PD patients had a loss of structural integrity within the Ch1-2 and Ch3-4 nuclei of the basal forebrain as well as in the fornix. Tractography showed that the probability of anatomical connection was decreased in PD between Ch3-4 and the associative prefrontal cortex, occipital cortex, and peri-insular regions. There was a reduction in functional connectivity between Ch1-2 and the bilateral hippocampi and parahippocampal gyri, the left middle and superior temporal gyri, and the left fusiform gyrus and between Ch3-4 and the right inferior frontal gyrus and the right and left thalamus. In Ch1-2, loss of structural integrity and connectivity correlated with scores at the memory tests, whereas changes in Ch3-4 correlated with scores of global cognition and executive functions. CONCLUSION: This study highlights the association between deficits of different cholinergic nuclei of the basal forebrain and the extent of cognitive impairments in nondemented PD patients. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Prosencéfalo Basal/diagnóstico por imagem , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico por imagem , Função Executiva/fisiologia , Doença de Parkinson/diagnóstico por imagem , Idoso , Mapeamento Encefálico , Disfunção Cognitiva/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Doença de Parkinson/complicações
20.
Mol Ther ; 26(1): 256-268, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29033008

RESUMO

The aim of this study was the evaluation of the safety and efficacy of unilateral subretinal injection of the adeno-associated vector (AAV) serotypes 2 and 4 (AAV2/4) RPE65-RPE65 vector in patients with Leber congenital amaurosis (LCA) associated with RPE65 gene deficiency. We evaluated ocular and general tolerance and visual function up to 1 year after vector administration in the most severely affected eye in nine patients with retinal degeneration associated with mutations in the RPE65 gene. Patients received either low (1.22 × 1010 to 2 × 1010 vector genomes [vg]) or high (between 3.27 × 1010 and 4.8 × 1010 vg) vector doses. An ancillary study, in which six of the original nine patients participated, extended the follow-up period to 2-3.5 years. All patients showed good ophthalmological and general tolerance to the rAAV2/4-RPE65-RPE65 vector. We observed a trend toward improved visual acuity in patients with nystagmus, stabilization and improvement of the visual field, and cortical activation along visual pathways during fMRI analysis. OCT analysis after vector administration revealed no retinal thinning, except in cases of macular detachment. Our findings show that the rAAV2/4.RPE65.RPE65 vector was well tolerated in nine patients with RPE65-associated LCA. Efficacy parameters varied between patients during follow-up.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Amaurose Congênita de Leber/genética , cis-trans-Isomerases/genética , Adolescente , Adulto , Análise de Variância , Criança , Seguimentos , Terapia Genética/métodos , Humanos , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/terapia , Imageamento por Ressonância Magnética , Tomografia de Coerência Óptica , Campos Visuais , Adulto Jovem , cis-trans-Isomerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA