RESUMO
The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.
Assuntos
Composição Corporal , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Homeodomínio , Homeostase , Hipotálamo , Camundongos Knockout , Animais , Masculino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
Implementation of regular physical activity helps in the maintenance of a healthy metabolic profile both in humans and mice through molecular mechanisms not yet completely defined. Here, we show that high-intensity interval training (HIIT) modifies the microRNA (miRNA) profile of circulating exosomes in mice, including significant increases in miR-133a and miR-133b Importantly, treatment of sedentary mice with exosomes isolated from the plasma of trained mice improves glucose tolerance, insulin sensitivity, and decreases plasma levels of triglycerides. Moreover, exosomes isolated from the muscle of trained mice display similar changes in miRNA content, and their administration to sedentary mice reproduces the improvement of glucose tolerance. Exosomal miRNAs up-regulated by HIIT target insulin-regulated transcription factor forkhead box O1 (FoxO1) and, accordingly, expression of FoxO1 is decreased in the liver of trained and exosome-treated mice. Treatment with exosomes transfected with a miR-133b mimic or with a specific siRNA targeting FoxO1 recapitulates the metabolic effects observed in trained mice. Overall, our data suggest that circulating exosomes released by the muscle carry a specific miRNA signature that is modified by exercise and induce expression changes in the liver that impact whole-body metabolic profile.
Assuntos
Regulação para Baixo/genética , Exossomos/metabolismo , Proteína Forkhead Box O1/genética , Treinamento Intervalado de Alta Intensidade , Resistência à Insulina , Fígado/metabolismo , MicroRNAs/metabolismo , Músculos/metabolismo , Animais , Exossomos/ultraestrutura , Proteína Forkhead Box O1/metabolismo , Gluconeogênese , Glucose/metabolismo , Metabolismo dos Lipídeos , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Condicionamento Físico AnimalRESUMO
AIMS/HYPOTHESIS: Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. METHODS: We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5-6.0 mg kg-1 day-1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. RESULTS: Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. CONCLUSIONS/INTERPRETATION: Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.
Assuntos
Antipsicóticos , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Animais , Antipsicóticos/efeitos adversos , Aripiprazol/metabolismo , Aripiprazol/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Olanzapina/efeitos adversos , Olanzapina/metabolismoRESUMO
Mammalian colour patterns are among the most recognizable characteristics found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying the formation and subsequent evolution of these patterns. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in hair colour. We identify the transcription factor ALX3 as a regulator of this process. In embryonic dorsal skin, patterned expression of Alx3 precedes pigment stripes and acts to directly repress Mitf, a master regulator of melanocyte differentiation, thereby giving rise to light-coloured hair. Moreover, Alx3 is upregulated in the light stripes of chipmunks, which have independently evolved a similar dorsal pattern. Our results show a previously undescribed mechanism for modulating spatial variation in hair colour and provide insights into how phenotypic novelty evolves.
Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Cor de Cabelo , Murinae/embriologia , Murinae/genética , Animais , Evolução Biológica , Padronização Corporal/genética , Diferenciação Celular , Cor de Cabelo/genética , Proteínas de Homeodomínio/metabolismo , Melaninas/biossíntese , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/antagonistas & inibidores , Fator de Transcrição Associado à Microftalmia/metabolismo , Murinae/fisiologia , Fenótipo , Regiões Promotoras Genéticas/genética , Sciuridae/genética , Pele/embriologiaRESUMO
BACKGROUND: Insulin secretion from the pancreatic ß-cell is finely modulated by different signals to allow an adequate control of glucose homeostasis. Incretin hormones such as glucagon-like peptide-1 (GLP-1) act as key physiological potentiators of insulin release through binding to the G protein-coupled receptor GLP-1R. Another key regulator of insulin signaling is the Ser/Thr kinase G protein-coupled receptor kinase 2 (GRK2). However, whether GRK2 affects insulin secretion or if GRK2 can control incretin actions in vivo remains to be analyzed. RESULTS: Using GRK2 hemizygous mice, isolated pancreatic islets, and model ß-cell lines, we have uncovered a relevant physiological role for GRK2 as a regulator of incretin-mediated insulin secretion in vivo. Feeding, oral glucose gavage, or administration of GLP-1R agonists in animals with reduced GRK2 levels (GRK2+/- mice) resulted in enhanced early phase insulin release without affecting late phase secretion. In contrast, intraperitoneal glucose-induced insulin release was not affected. This effect was recapitulated in isolated islets and correlated with the increased size or priming efficacy of the readily releasable pool (RRP) of insulin granules that was observed in GRK2+/- mice. Using nanoBRET in ß-cell lines, we found that stimulation of GLP-1R promoted GRK2 association to this receptor and that GRK2 protein and kinase activity were required for subsequent ß-arrestin recruitment. CONCLUSIONS: Overall, our data suggest that GRK2 is an important negative modulator of GLP-1R-mediated insulin secretion and that GRK2-interfering strategies may favor ß-cell insulin secretion specifically during the early phase, an effect that may carry interesting therapeutic applications.
Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/genética , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Secreção de Insulina/genética , Animais , Linhagem Celular , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , CamundongosRESUMO
SUMMARY: Mass spectrometry imaging (MSI) can reveal biochemical information directly from a tissue section. MSI generates a large quantity of complex spectral data which is still challenging to translate into relevant biochemical information. Here, we present rMSIproc, an open-source R package that implements a full data processing workflow for MSI experiments performed using TOF or FT-based mass spectrometers. The package provides a novel strategy for spectral alignment and recalibration, which allows to process multiple datasets simultaneously. This enables to perform a confident statistical analysis with multiple datasets from one or several experiments. rMSIproc is designed to work with files larger than the computer memory capacity and the algorithms are implemented using a multi-threading strategy. rMSIproc is a powerful tool able to take full advantage of modern computer systems to completely develop the whole MSI potential. AVAILABILITY AND IMPLEMENTATION: rMSIproc is freely available at https://github.com/prafols/rMSIproc. CONTACT: pere.rafols@urv.cat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Software , Sistemas Computacionais , Espectrometria de Massas , Fluxo de TrabalhoRESUMO
BACKGROUND: Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown. OBJECTIVES: We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration. METHODS: We used streptozotocin-treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast-scan cyclic voltammetry. 6-Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests. RESULTS: Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin-2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6-hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra. CONCLUSIONS: Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Diabetes Mellitus Experimental , Dopamina , Animais , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Substância Negra/metabolismo , Transmissão SinápticaRESUMO
Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.
RESUMO
AIMS/HYPOTHESIS: The stimulation of glucagon secretion in response to decreased glucose levels has been studied extensively. In contrast, little is known about the regulation of glucagon gene expression in response to fluctuations in glucose concentration. Paired box 6 (PAX6) is a key transcription factor that regulates the glucagon promoter by binding to the G1 and G3 elements. Here, we investigated the role of the transcription factor aristaless-like homeobox 3 (ALX3) as a glucose-dependent modulator of PAX6 activity in alpha cells. METHODS: Experiments were performed in wild-type or Alx3-deficient islets and alphaTC1 cells. We used chromatin immunoprecipitations and electrophoretic mobility shift assays for DNA binding, immunoprecipitations and pull-down assays for protein interactions, transfected cells for promoter activity, and small interfering RNA and quantitative RT-PCR for gene expression. RESULTS: Elevated glucose concentration resulted in stimulated expression of Alx3 and decreased glucagon gene expression in wild-type islets. In ALX3-deficient islets, basal glucagon levels were non-responsive to changes in glucose concentration. In basal conditions ALX3 bound to the glucagon promoter at G3, but not at G1. ALX3 could form heterodimers with PAX6 that were permissive for binding to G3 but not to G1. Thus, increasing the levels of ALX3 in response to glucose resulted in the sequestration of PAX6 by ALX3 for binding to G1, thus reducing glucagon promoter activation and glucagon gene expression. CONCLUSIONS/INTERPRETATION: Glucose-stimulated expression of ALX3 in alpha cells provides a regulatory mechanism for the downregulation of glucagon gene expression by interfering with PAX6-mediated transactivation on the glucagon G1 promoter element.
Assuntos
Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX6/metabolismo , Animais , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Técnicas In Vitro , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Alterations in transcription factors expressed in insulin-producing islet ß-cells generate pancreatic dysfunction leading to diabetes. The homeodomain transcription factor Alx3 (aristaless-like homeobox 3) expressed in pancreatic islets participates in the regulated expression of several islet genes, and its deficiency in mice leads to islet cell apoptosis and glucose intolerance. In the present study, we investigated the mechanisms that regulate expression of Alx3 in pancreatic islets at the transcriptional level. We found that the Alx3 promoter contains at least eight putative regulatory elements with an E-box consensus sequence, three of which were determined to be functional and required for Alx3 promoter activity by mutational analysis in transfected MIN6 ß-cells. We determined that these E-box elements are recognized by the basic helix-loop-helix transcription factors USF1 (upstream stimulatory factor 1) and USF2. We also identified a highly conserved A-box in the Alx3 promoter that is recognized by the islet-specific transcription factor Pdx1 (pancreatic and duodenal homeobox 1). Pdx1-mediated transactivation of the Alx3 promoter requires the integrity of the three functional E-boxes and the co-operation with USF transcription factors bound to them. The results from the present study indicate that Pdx1 contributes to the transcriptional transactivation of Alx3 in pancreatic ß-cells by acting in co-ordination with USF1 and USF2.
Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ilhotas Pancreáticas/metabolismo , Transativadores/metabolismo , Fatores Estimuladores Upstream/metabolismo , Animais , Linhagem Celular , Camundongos , Transativadores/genética , Fatores Estimuladores Upstream/genéticaRESUMO
During embryonic development, the aristaless-type homeodomain protein Alx3 is expressed in the forehead mesenchyme and contributes to the regulation of craniofacial development. In the adult, Alx3 is expressed in pancreatic islets where it participates in the control of glucose homoeostasis. In the present study, we investigated the transcriptional regulation of Alx3 gene expression in these two cell types. We found that the Alx3 promoter contains two E-box regulatory elements, named EB1 and EB2, that provide binding sites for the basic helix-loop-helix transcription factors Twist1, E47, USF (upstream stimulatory factor) 1 and USF2. In primary mouse embryonic mesenchymal cells isolated from the forehead, EB2 is bound by Twist1, whereas EB1 is bound by USF1 and USF2. Integrity of both EB1 and EB2 is required for Twist1-mediated transactivation of the Alx3 promoter, even though Twist1 does not bind to EB1, indicating that binding of USF1 and USF2 to this element is required for Twist1-dependent Alx3 promoter activity. In contrast, in pancreatic islet insulin-producing cells, the integrity of EB2 is not required for proximal promoter activity. The results of the present study indicate that USF1 and USF2 are important regulatory factors for Alx3 gene expression in different cell types, whereas Twist1 contributes to transcriptional transactivation in mesenchymal, but not in pancreatic, cells.
Assuntos
Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteína 1 Relacionada a Twist/genética , Fatores Estimuladores Upstream/genética , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Chlorocebus aethiops , Embrião de Mamíferos/metabolismo , Feminino , Células Secretoras de Glucagon/metabolismo , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Gravidez , Proteína 1 Relacionada a Twist/metabolismo , Fatores Estimuladores Upstream/metabolismoRESUMO
Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.
Assuntos
Relógios Circadianos , Leptina , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Leptina/metabolismo , Camundongos Knockout , Obesidade/metabolismo , Succinatos/metabolismoRESUMO
Metabolic homeostasis is under circadian regulation to adapt energy requirements to light-dark cycles. Feeding cycles are regulated by photic stimuli reaching the suprachiasmatic nucleus via retinohypothalamic axons and by nutritional information involving dopaminergic neurotransmission. Previously, we reported that Pitx3-mutant Aphakia mice with altered development of the retinohypothalamic tract and the dopaminergic neurons projecting to the striatum, are resistant to locomotor and metabolic entrainment by time-restricted feeding. In their Matters Arising article, Scarpa et al. (2022) challenge this conclusion using mice from the same strain but following a different experimental paradigm involving calorie restriction. Here, we address their concerns by extending the analyses of our previous data, by identifying important differences in the experimental design between both studies and by presenting additional results on the dopaminergic deficit in the brain of Aphakia mice. This Matters Arising Response article addresses the Matters Arising article by Scarpa et al. (2022), published concurrently in Cell Reports.
Assuntos
Afacia , Núcleo Supraquiasmático , Animais , Dopamina , Metabolismo Energético , Camundongos , FotoperíodoRESUMO
Neural tube closure defects are among the most frequent congenital malformations in humans. Supplemental maternal intake of folic acid before and during pregnancy reduces their incidence significantly, but the mechanism underlying this preventive effect is unknown. As a number of genes that cause neural tube closure defects encode transcriptional regulators in mice, one possibility is that folic acid could induce the expression of transcription factors to compensate for the primary genetic defect. We report that folic acid is required in mouse embryos for the specific expression of the homeodomain gene Alx3 in the head mesenchyme, an important tissue for cranial neural tube closure. Alx3-deficient mice exhibit increased failure of cranial neural tube closure and increased cell death in the craniofacial region, two effects that are also observed in wild type embryos developing in the absence of folic acid. Folic acid cannot prevent these defects in Alx3-deficient embryos, indicating that one mechanism of folic acid action is through induced expression of Alx3. Thus, Alx3 emerges as a candidate gene for human neural tube defects and reveals the existence of induced transcription factor gene expression as a previously unknown mechanism by which folic acid prevents neural tube closure defects.
Assuntos
Ácido Fólico/metabolismo , Defeitos do Tubo Neural/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Feminino , Ácido Fólico/genética , Ácido Fólico/farmacologia , Genótipo , Hematínicos , Mesoderma/metabolismo , Camundongos , Defeitos do Tubo Neural/prevenção & controle , Neurulação , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
OBJECTIVE: Pancreatic ß-cell dysfunction is a central feature in the pathogenesis of type 2 diabetes (T2D). Accumulating evidence indicates that ß-site APP-cleaving enzyme 2 (BACE2) inhibition exerts a beneficial effect on ß-cells in different models of T2D. Thus, targeting BACE2 may represent a potential therapeutic strategy for the treatment of this disease. Here, we aimed to investigate the effects of BACE2 suppression on glucose homeostasis in a model of diet-induced obesity. METHODS: BACE2 knock-out (BKO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 2 or 16 weeks. Body weight, food intake, respiratory exchange ratio, locomotor activity, and energy expenditure were determined. Glucose homeostasis was evaluated by glucose and insulin tolerance tests. ß-cell proliferation was assessed by Ki67-positive nuclei, and ß-cell function was determined by measuring glucose-stimulated insulin secretion. Leptin sensitivity was evaluated by quantifying food intake and body weight after an intraperitoneal leptin injection. Neuropeptide gene expression and insulin signaling in the mediobasal hypothalamus were determined by qPCR and Akt phosphorylation, respectively. RESULTS: After 16 weeks of HFD feeding, BKO mice exhibited an exacerbated body weight gain and hyperphagia, in comparison to WT littermates. Glucose tolerance was similar in both groups, whereas HFD-induced hyperinsulinemia, insulin resistance, and ß-cell expansion were more pronounced in BKO mice. In turn, leptin-induced food intake inhibition and hypothalamic insulin signaling were impaired in BKO mice, regardless of the diet, in accordance with deregulation of the expression of hypothalamic neuropeptide genes. Importantly, BKO mice already showed increased ß-cell proliferation and glucose-stimulated insulin secretion with respect to WT littermates after two weeks of HFD feeding, before the onset of obesity. CONCLUSIONS: Collectively, these results reveal that BACE2 suppression in an obesogenic setting leads to exacerbated body weight gain, hyperinsulinemia, and insulin resistance. Thus, we conclude that inhibition of BACE2 may aggravate the adverse metabolic effects associated with obesity.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Obesidade/metabolismo , Animais , Dieta/efeitos adversos , Masculino , Camundongos , Camundongos TransgênicosRESUMO
Childhood obesity is a strong risk factor for adult obesity, type 2 diabetes, and cardiovascular disease. The mechanisms that link early adiposity with late-onset chronic diseases are poorly characterised. We developed a mouse model of early adiposity through litter size reduction. Mice reared in small litters (SLs) developed obesity, insulin resistance, and hepatic steatosis during adulthood. The liver played a major role in the development of the disease. OBJECTIVE: To gain insight into the molecular mechanisms that link early development and childhood obesity with adult hepatic steatosis and insulin resistance. METHODS: We analysed the hepatic transcriptome (Affymetrix) of control and SL mice to uncover potential pathways involved in the long-term programming of disease in our model. RESULTS: The circadian rhythm was the most significantly deregulated Gene Ontology term in the liver of adult SL mice. Several core clock genes, such as period 1-3 and cryptochrome 1-2, were altered in two-week-old SL mice and remained altered throughout their life course until they reached 4-6 months of age. Defective circadian rhythm was restricted to the periphery since the expression of clock genes in the hypothalamus, the central pacemaker, was normal. The period-cryptochrome genes were primarily entrained by dietary signals. Hence, restricting food availability during the light cycle only uncoupled the central rhythm from the peripheral and completely normalised hepatic triglyceride content in adult SL mice. This effect was accompanied by better re-alignment of the hepatic period genes, suggesting that they might have played a causal role in mediating hepatic steatosis in the adult SL mice. Functional downregulation of Per2 in hepatocytes in vitro confirmed that the period genes regulated lipid-related genes in part through peroxisome proliferator-activated receptor alpha (Ppara). CONCLUSIONS: The hepatic circadian rhythm matures during early development, from birth to postnatal day 30. Hence, nutritional challenges during early life may misalign the hepatic circadian rhythm and secondarily lead to metabolic derangements. Specific time-restricted feeding interventions improve metabolic health in the context of childhood obesity by partially re-aligning the peripheral circadian rhythm.
Assuntos
Ritmo Circadiano/fisiologia , Lactação , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adiposidade , Adulto , Animais , Ritmo Circadiano/genética , Diabetes Mellitus Tipo 2/metabolismo , Jejum , Feminino , Humanos , Hipotálamo/metabolismo , Recém-Nascido , Resistência à Insulina/fisiologia , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/metabolismo , Obesidade InfantilRESUMO
Accelerated postnatal growth is a potentially modifiable risk factor for future obesity. To study how specific breast milk components contribute to early growth and obesity risk, we quantified one-carbon metabolism-related metabolites in human breast milk and found an inverse association between milk betaine content and infant growth. This association was replicated in an independent and geographically distinct cohort. To determine the potential role of milk betaine in modulating offspring obesity risk, we performed maternal betaine supplementation experiments in mice. Higher betaine intake during lactation increased milk betaine content in dams and led to lower adiposity and improved glucose homeostasis throughout adulthood in mouse offspring. These effects were accompanied by a transient increase in Akkermansia spp. abundance in the gut during early life and a long-lasting increase in intestinal goblet cell number. The link between breast milk betaine and Akkermansia abundance in the gut was also observed in humans, as infants exposed to higher milk betaine content during breastfeeding showed higher fecal Akkermansia muciniphila abundance. Furthermore, administration of A. muciniphila to mouse pups during the lactation period partially replicated the effects of maternal breast milk betaine, including increased intestinal goblet cell number, lower adiposity, and improved glucose homeostasis during adulthood. These data demonstrate a link between breast milk betaine content and long-term metabolic health of offspring.
Assuntos
Betaína , Leite Humano , Akkermansia , Animais , Dieta Hiperlipídica , Feminino , Lactação , CamundongosRESUMO
Ca(2+) influx through L-type voltage-gated Ca(2+) channels (L-VSCC) is required for K(+)-induced somatostatin (SS) mRNA. Increase in intracellular Ca(2+) concentration leads to the activation of cyclic AMP-responsive element binding protein (CREB), a key regulator of SS gene transcription. Several different protein kinases possess the capability of driving CREB upon membrane depolarization. We investigated which of the signalling pathways involved in CREB activation mediates SS gene induction in response to membrane depolarization in cerebrocortical cells exposed to 56 mM K(+). Activity dependent phosphorylation of CREB in Ser(133) was immunodetected. Activation of CREB was biphasic showing two peaks at 5 and 60 min. The selective inhibitors of extracellular signal related protein kinase/mitogen-activated protein kinase (ERK/MAPK) PD098059, cyclic-AMPdependent protein kinase (cAMP/PKA) H89 and RpcAMPS, and Ca(2+)/calmodulin-dependent protein kinases (CaMKs) pathways KN62 and KN93 were used to determine the signalling pathways involved in CREB activation. Here we show that the early activation of CREB was dependent on cAMP/PKA along with CaMKs pathways whereas the ERK/MAPK and CaMKs were implicated in the second peak. We observed that H89, RpcAMPS, KN62 and KN93 blocked K(+)-induced SS mRNA whereas PD098059 did not. These findings indicate that K(+)-induced SSmRNA is mediated by the activation of cAMP/PKA and CaMKs pathways, thus suggesting that the early activation of CREB is involved in the induction of SS by neuronal activity. We also demonstrated, using transient transfections of cerebrocortical cells, that K(+) induces the transcriptional regulation of the SS gene through the cAMP-responsive element (CRE) sequence located in the SS promoter.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transdução de Sinais/fisiologia , Somatostatina/genética , Animais , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cloreto de Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Somatostatina/metabolismo , Fatores de Tempo , Transfecção/métodosRESUMO
Animal models are invaluable for biomedical research, especially in the context of rare diseases, which have a very low prevalence and are often complex. Concretely mouse models provide key information on rare disease mechanisms and therapeutic strategies that cannot be obtained by using only alternative methods, and greatly contribute to accelerate the development of new therapeutic options for rare diseases. Despite this, the use of experimental animals remains controversial. The combination of respectful management, ethical laws and transparency regarding animal experimentation contributes to improve society's opinion about biomedical research and positively impacts on research quality, which eventually also benefits patients. Here we present examples of current advances in preclinical research in rare diseases using mouse models, together with our perspective on future directions and challenges.
RESUMO
In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.