Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7844): 151-156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33442055

RESUMO

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Assuntos
Dor Abdominal/imunologia , Dor Abdominal/patologia , Alérgenos/imunologia , Hipersensibilidade Alimentar/imunologia , Alimentos/efeitos adversos , Intestinos/imunologia , Síndrome do Intestino Irritável/imunologia , Dor Abdominal/etiologia , Dor Abdominal/microbiologia , Adulto , Animais , Citrobacter rodentium/imunologia , Diarreia/imunologia , Diarreia/microbiologia , Diarreia/patologia , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Hipersensibilidade Alimentar/complicações , Hipersensibilidade Alimentar/microbiologia , Hipersensibilidade Alimentar/patologia , Glutens/imunologia , Humanos , Imunoglobulina E/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Leite/imunologia , Ovalbumina/imunologia , Qualidade de Vida , Receptores Histamínicos H1/metabolismo , Proteínas de Soja/imunologia , Triticum/imunologia
2.
J Neurosci ; 42(33): 6313-6324, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35790401

RESUMO

While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.


Assuntos
Dor Abdominal , Agonistas de Receptores de Canabinoides , Canabinoides , Receptores Opioides , Dor Abdominal/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide , Receptores Opioides/agonistas
3.
J Neurosci ; 42(16): 3316-3328, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35256532

RESUMO

Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.


Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/efeitos adversos , Animais , Tolerância a Medicamentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/uso terapêutico , Trato Gastrointestinal , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Morfina/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Proteína Quinase C , Receptores Opioides , Receptores Opioides mu , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 117(26): 15281-15292, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546520

RESUMO

Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and ß-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.


Assuntos
Leucina Encefalina-2-Alanina/farmacologia , Inflamação/complicações , Dor/tratamento farmacológico , Dor/metabolismo , Receptores Opioides delta/agonistas , Animais , Colo/inervação , Leucina Encefalina-2-Alanina/administração & dosagem , Células HEK293 , Humanos , Camundongos , Nanopartículas/administração & dosagem , Neurônios , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Gut ; 71(4): 695-704, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33785555

RESUMO

OBJECTIVE: The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN: Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS: NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit ß-arrestins and evoke MOPr endocytosis. CONCLUSION: In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.


Assuntos
Colite , Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Insuficiência Respiratória , Dor Visceral , Animais , Colite/induzido quimicamente , Colo , Constipação Intestinal , Fentanila/efeitos adversos , Humanos , Doenças Inflamatórias Intestinais/complicações , Camundongos , Receptores Opioides , Microambiente Tumoral
6.
Gut ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36591617

RESUMO

OBJECTIVE: Dietary therapies for irritable bowel syndrome (IBS) have received increasing interest but predicting which patients will benefit remains a challenge due to a lack of mechanistic insight. We recently found evidence of a role for the microbiota in dietary modulation of pain signalling in a humanised mouse model of IBS. This randomised cross-over study aimed to test the hypothesis that pain relief following reduced consumption of fermentable carbohydrates is the result of changes in luminal neuroactive metabolites. DESIGN: IBS (Rome IV) participants underwent four trial periods: two non-intervention periods, followed by a diet low (LFD) and high in fermentable carbohydrates for 3 weeks each. At the end of each period, participants completed questionnaires and provided stool. The effects of faecal supernatants (FS) collected before (IBS FS) and after a LFD (LFD FS) on nociceptive afferent neurons were assessed in mice using patch-clamp and ex vivo colonic afferent nerve recording techniques. RESULTS: Total IBS symptom severity score and abdominal pain were reduced by the LFD (N=25; p<0.01). Excitability of neurons was increased in response to IBS FS, but this effect was reduced (p<0.01) with LFD FS from pain-responders. IBS FS from pain-responders increased mechanosensitivity of nociceptive afferent nerve axons (p<0.001), an effect lost following LFD FS administration (p=NS) or when IBS FS was administered in the presence of antagonists of histamine receptors or protease inhibitors. CONCLUSIONS: In a subset of IBS patients with improvement in abdominal pain following a LFD, there is a decrease in pronociceptive signalling from FS, suggesting that changes in luminal mediators may contribute to symptom response.

7.
J Neurosci ; 41(1): 193-210, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172978

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.


Assuntos
Dor do Câncer/induzido quimicamente , Carcinoma de Células Escamosas/complicações , Cisteína Endopeptidases , Neoplasias Bucais/complicações , Receptor PAR-2/agonistas , Idoso , Idoso de 80 Anos ou mais , Animais , Arrestina/metabolismo , Dor do Câncer/psicologia , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Cisteína Endopeptidases/administração & dosagem , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Quinase C/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor PAR-2/genética , Microambiente Tumoral/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 115(31): E7438-E7447, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012612

RESUMO

Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with ß-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.


Assuntos
Dor Crônica/etiologia , Endossomos/fisiologia , Síndrome do Intestino Irritável/fisiopatologia , Receptor PAR-2/fisiologia , Transdução de Sinais/fisiologia , Animais , Endocitose , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Nociceptividade , Nociceptores/fisiologia , Tripsina/farmacologia
9.
J Biol Chem ; 294(27): 10649-10662, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142616

RESUMO

Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and ß-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or ß-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gßγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gßγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gßγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteína Quinase C/metabolismo , Receptor PAR-2/metabolismo , Animais , Catepsinas/metabolismo , Membrana Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/antagonistas & inibidores , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Receptor PAR-2/agonistas , Transdução de Sinais/efeitos dos fármacos , Xantenos/administração & dosagem , Xantenos/farmacologia
10.
J Neurosci ; 37(48): 11758-11768, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29089436

RESUMO

Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 µm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K+ currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain.SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain.


Assuntos
Gânglios Espinais/enzimologia , Microbioma Gastrointestinal/fisiologia , Granzimas/administração & dosagem , Neurônios/enzimologia , Simbiose/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/microbiologia , Peptídeo Hidrolases/administração & dosagem , Simbiose/efeitos dos fármacos
11.
Biomarkers ; 23(8): 735-741, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29871536

RESUMO

PURPOSE: Examine the association between bulky DNA adduct levels in colon mucosa and colorectal adenoma prevalence, and explore the correlation between adduct levels in leukocytes and colon tissue. METHODS: Bulky DNA adduct levels were measured using 32P-postlabelling in biopsies of normal-appearing colon tissue and blood donated by 202 patients. Multivariable logistic regression was used to examine associations between DNA adducts, and interactions of DNA adduct-DNA repair polymorphisms, with the prevalence of colorectal adenomas. Correlation between blood and tissue levels of DNA adducts was evaluated using Spearman's correlation coefficient. RESULTS: An interaction between bulky DNA adduct levels and XPA rs1800975 on prevalence of colorectal adenoma was observed. Among individuals with lower DNA repair activity, increased DNA adduct levels were associated with increased colorectal adenoma prevalence (OR = 1.41 per SD increase, 95%CI: 0.92-2.18). Conversely, among individuals with normal DNA activity, an inverse association was observed (OR = 0.60 per SD increase, 95%CI: 0.34-1.07). Blood and colon DNA adduct levels were inversely correlated (ρ = -0.20). CONCLUSIONS: Among genetically susceptible individuals, higher bulky DNA adducts in the colon was associated with the prevalence of colorectal adenomas. The inverse correlation between blood and colon tissue measures demonstrates the importance of quantifying biomarkers in target tissues.


Assuntos
Neoplasias Colorretais/etiologia , Adutos de DNA/análise , Mucosa Intestinal/química , Adenoma/etiologia , Adulto , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Prevalência , Proteína de Xeroderma Pigmentoso Grupo A/genética
12.
Gut ; 66(12): 2121-2131, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27590998

RESUMO

AIMS AND BACKGROUND: Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. METHODS: Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca2+ imaging techniques. RESULTS: Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein ßϒ subunits. CONCLUSIONS: Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD.


Assuntos
Colite/metabolismo , Colo/inervação , Gânglios Espinais/metabolismo , Estresse Psicológico/fisiopatologia , beta-Endorfina/metabolismo , Adulto , Idoso , Animais , Biópsia , Doença Crônica , Colite/imunologia , Citocinas/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Naloxona/farmacologia , Nociceptores/fisiologia , Técnicas de Patch-Clamp , Transdução de Sinais
13.
J Biol Chem ; 291(21): 11285-99, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27030010

RESUMO

Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gßγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gßγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gßγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gßγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteína Quinase C/metabolismo , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Sinalização do Cálcio , Linhagem Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Ratos , Xantenos/farmacologia
14.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G201-G207, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007748

RESUMO

Animal studies have led to significant advances in our understanding of pain mechanisms in the intestine that could lead to altered signaling in disorders such as irritable bowel syndrome. However, how these translate to the human afferent nervous system is unclear. Recent studies have demonstrated that it is possible to use a variety of techniques, including electrophysiological recordings, to begin to examine these concepts in humans. This mini-review examines these studies to explore how well animal studies translate to humans suffering from irritable bowel syndrome, highlights some of the advantages and technical limitations of these approaches, and identifies some priorities for future studies using human tissues.


Assuntos
Hiperalgesia/metabolismo , Síndrome do Intestino Irritável/metabolismo , Nociceptores/fisiologia , Dor Visceral/metabolismo , Humanos , Hiperalgesia/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Dor Visceral/fisiopatologia
15.
J Biol Chem ; 290(22): 13875-87, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25878251

RESUMO

Proteases that cleave protease-activated receptor-2 (PAR(2)) at Arg(36)↓Ser(37) reveal a tethered ligand that binds to the cleaved receptor. PAR(2) activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR(2) at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR(2)-biased agonism is uncertain. We investigated whether neutrophil elastase, a biased agonist of PAR(2), causes inflammation and pain by activating PAR2 and TRP vanilloid 4 (TRPV4). Elastase cleaved human PAR(2) at Ala(66)↓Ser(67) and Ser(67)↓Val(68). Elastase stimulated PAR(2)-dependent cAMP accumulation and ERK1/2 activation, but not Ca(2+) mobilization, in KNRK cells. Elastase induced PAR(2) coupling to Gαs but not Gαq in HEK293 cells. Although elastase did not promote recruitment of G protein-coupled receptor kinase-2 (GRK(2)) or ß-arrestin to PAR(2), consistent with its inability to promote receptor endocytosis, elastase did stimulate GRK6 recruitment. Elastase caused PAR(2)-dependent sensitization of TRPV4 currents in Xenopus laevis oocytes by adenylyl cyclase- and protein kinase A (PKA)-dependent mechanisms. Elastase stimulated PAR(2)-dependent cAMP formation and ERK1/2 phosphorylation, and a PAR(2)- and TRPV4-mediated influx of extracellular Ca(2+) in mouse nociceptors. Adenylyl cyclase and PKA-mediated elastase-induced activation of TRPV4 and hyperexcitability of nociceptors. Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR(2)- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR(2) causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR(2) as a mediator of protease-driven inflammation and pain.


Assuntos
Inflamação/metabolismo , Elastase de Leucócito/metabolismo , Dor/metabolismo , Receptor PAR-2/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Edema/metabolismo , Edema/patologia , Proteínas de Ligação ao GTP/metabolismo , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nociceptividade , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Peptídeo Hidrolases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Xenopus laevis/metabolismo
16.
J Biol Chem ; 289(39): 27215-27234, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25118282

RESUMO

Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R(36)↓S(37) and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E(56)↓T(57), which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca(2+), activate ERK1/2, recruit ß-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.


Assuntos
Catepsinas/metabolismo , Dor , Receptor PAR-2 , Canais de Cátion TRPV , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Catepsinas/genética , Células HEK293 , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Dor/genética , Dor/metabolismo , Dor/patologia , Receptor PAR-2/agonistas , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Xenopus laevis
17.
Cell Tissue Res ; 356(2): 309-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24715114

RESUMO

Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.


Assuntos
Colite/patologia , Gânglios Espinais/patologia , Intestinos/patologia , Plasticidade Neuronal , Células do Corno Posterior/imunologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Inflamação/imunologia , Inflamação/patologia , Intestinos/imunologia , Região Lombossacral/inervação , Masculino , Camundongos , Dor , Células do Corno Posterior/patologia , Substância P/imunologia
18.
BMC Cancer ; 14: 488, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24998982

RESUMO

BACKGROUND: The methylation of DNA is recognized as a key epigenetic mechanism and evidence for its role in the development of several malignancies is accumulating. We evaluated the relationship between global methylation in DNA derived from normal appearing colon mucosal tissue and blood leukocytes, and colorectal adenoma risk. METHODS: Patients, aged 40 to 65, scheduled for a screening colonoscopy were recruited. During the colonoscopy, two pinch biopsies of healthy, normal appearing mucosa were obtained from the descending colon. A fasting blood sample was also collected. The methylation status of LINE-1 (long interspersed nuclear element-1) repetitive sequences, as a surrogate measure of global methylation, was quantified in DNA extracted from normal colon mucosa and blood leukocytes. Statistical analysis of the relationship between global DNA methylation and adenoma risk was conducted on 317 participants, 108 subjects with at least one pathologically confirmed adenoma and 209 subjects with a normal colonoscopy. RESULTS: A statistically significant inverse relationship was observed between LINE-1 methylation in colon tissue DNA and adenoma risk for males and for both sexes combined for the lowest methylation quartile compared to the highest (adjusted ORs = 2.94 and 2.26 respectively). For blood, although the overall pattern of odds ratio estimates was towards an increase in risk for lower methylation quartiles compared to the highest methylation quartile, there were no statistically significant relationships observed. A moderate correlation was found between LINE-1 methylation levels measured in tissue and blood (Pearson correlation 0.36). CONCLUSIONS: We observed that lower levels of LINE-1 DNA methylation in normal appearing background colon mucosa were associated with increased adenoma risk for males, and for both sexes combined. Though these findings provide some support for a relationship between LINE-1 DNA methylation in colon mucosal tissue and adenoma risk, large prospective cohort studies are needed to confirm results. Until such investigations are done, the clinical usefulness of LINE-1 methylation as a biomarker of increased adenoma risk is uncertain. Regardless, this study contributes to a better understanding of the role of global DNA methylation as an early event in CR carcinogenesis with implications for future etiologic research.


Assuntos
Adenoma/diagnóstico , Adenoma/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Metilação de DNA , Adenoma/sangue , Adulto , Neoplasias Colorretais/sangue , Estudos Transversais , Epigênese Genética , Feminino , Humanos , Elementos Nucleotídeos Longos e Dispersos , Masculino , Pessoa de Meia-Idade
19.
Brain Behav Immun ; 41: 1-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24642072

RESUMO

Inflammation involving the helper T cell 17 (Th17) subset of lymphocytes has been implicated in a number of diseases that affect the nervous system. As the canonical cytokine of Th17 cells, interleukin 17A (IL-17A) is thought to contribute to these neuroimmune interactions. The main receptor for IL-17A is expressed in many neural tissues. IL-17A has direct effects on neurons but can also impact neural function via signaling to satellite cells and immune cells. In the central nervous system, IL-17A has been associated with neuropathology in multiple sclerosis, epilepsy syndromes and ischemic brain injury. Effects of IL-17A at the level of dorsal root ganglia and the spinal cord may contribute to enhanced nociception during neuropathic and inflammatory pain. Finally, IL-17A plays a role in sympathetic axon growth and regeneration of damaged axons that innervate the cornea. Given the widespread effects of IL-17A on neural tissues, it will be important to determine whether selectively mitigating the damaging effects of this cytokine while augmenting its beneficial effects is a possible strategy to treat inflammatory damage to the nervous system.


Assuntos
Interleucina-17/fisiologia , Neuroimunomodulação/fisiologia , Células Th17/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiologia , Modelos Animais de Doenças , Epilepsia/imunologia , Epilepsia/fisiopatologia , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Degeneração Neural/imunologia , Degeneração Neural/metabolismo , Neuralgia/imunologia , Neuralgia/fisiopatologia , Neuroglia/metabolismo , Neurônios/metabolismo , Percepção da Dor/fisiologia , Ratos , Receptores de Interleucina-17/fisiologia
20.
Br J Pharmacol ; 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39396524

RESUMO

BACKGROUND AND PURPOSE: Tolerance to the analgesic effects of opioids and resultant dose escalation is associated with worsening of side effects and greater addiction risk. Here, we compare the development of tolerance to the conventional opioid fentanyl with a novel pH-sensitive µ-opioid receptor (MOR) agonist, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP) that is active only in acidic inflammatory microenvironments. EXPERIMENTAL APPROACH: An opioid tolerance model was developed in male C57BL/6 mice, with and without dextran sulphate sodium colitis, using increasing doses of either fentanyl or NFEPP over 5 days. Visceral nociception was assessed in vivo by measuring visceromotor responses (VMRs) to noxious colorectal distensions and in vitro measuring colonic afferent nerve activity of mesenteric nerves and performing patch-clamp recordings from isolated dorsal root ganglia neurons. Somatic thermal nociception was tested using a tail immersion assay. Cardiorespiratory effects were analysed by pulse oximeter experiments. KEY RESULTS: VMRs and tail immersion tests demonstrated tolerance to fentanyl, but not to NFEPP in colitis mice. Cross-tolerance also occurred to fentanyl, but not to NFEPP. The MOR agonist DAMGO inhibited colonic afferent nerve activity in colitis mice exposed to chronic NFEPP, but not those from fentanyl-treated mice. Similarly, in patch-clamp recordings from isolated dorsal root ganglia neurons, DAMGO inhibited neurons from NFEPP-, but not fentanyl-treated mice. CONCLUSION AND IMPLICATIONS: NFEPP did not exhibit tolerance in an inflammatory pain model, unlike fentanyl. Consequently, dose escalation to maintain analgesia during an evolving inflammation could be avoided, mitigating the potential risk of side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA