Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Psychiatry ; 96(8): 674-683, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942349

RESUMO

BACKGROUND: Striatal hyperdopaminergia is implicated in the pathoetiology of schizophrenia, but how this relates to dopaminergic midbrain activity is unclear. Neuromelanin (NM)-sensitive magnetic resonance imaging provides a marker of long-term dopamine function. We examined whether midbrain NM-sensitive magnetic resonance imaging contrast-to-noise ratio (NM-CNR) was higher in people with schizophrenia than in healthy control (HC) participants and whether this correlated with dopamine synthesis capacity. METHODS: One hundred fifty-four participants (schizophrenia group: n = 74, HC group: n = 80) underwent NM-sensitive magnetic resonance imaging of the substantia nigra and ventral tegmental area (SN-VTA). A subset of the schizophrenia group (n = 38) also received [18F]-DOPA positron emission tomography to measure dopamine synthesis capacity (Kicer) in the SN-VTA and striatum. RESULTS: SN-VTA NM-CNR was significantly higher in patients with schizophrenia than in HC participants (effect size = 0.38, p = .019). This effect was greatest for voxels in the medial and ventral SN-VTA. In patients, SN-VTA Kicer positively correlated with SN-VTA NM-CNR (r = 0.44, p = .005) and striatal Kicer (r = 0.71, p < .001). Voxelwise analysis demonstrated that SN-VTA NM-CNR was positively associated with striatal Kicer (r = 0.53, p = .005) and that this relationship seemed strongest between the ventral SN-VTA and associative striatum in schizophrenia. CONCLUSIONS: Our results suggest that NM levels are higher in patients with schizophrenia than in HC individuals, particularly in midbrain regions that project to parts of the striatum that receive innervation from the limbic and association cortices. The direct relationship between measures of NM and dopamine synthesis suggests that these aspects of schizophrenia pathophysiology are linked. Our findings highlight specific mesostriatal circuits as the loci of dopamine dysfunction in schizophrenia and thus as potential therapeutic targets.


Assuntos
Di-Hidroxifenilalanina , Dopamina , Imageamento por Ressonância Magnética , Melaninas , Tomografia por Emissão de Pósitrons , Esquizofrenia , Substância Negra , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Masculino , Feminino , Adulto , Melaninas/metabolismo , Dopamina/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Pessoa de Meia-Idade , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/diagnóstico por imagem
2.
Wellcome Open Res ; 9: 182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036710

RESUMO

Background: Trace amine-associated receptor 1 (TAAR1) agonism shows promise for treating psychosis, prompting us to synthesise data from human and non-human studies. Methods: We co-produced a living systematic review of controlled studies examining TAAR1 agonists in individuals (with or without psychosis/schizophrenia) and relevant animal models. Two independent reviewers identified studies in multiple electronic databases (until 17.11.2023), extracted data, and assessed risk of bias. Primary outcomes were standardised mean differences (SMD) for overall symptoms in human studies and hyperlocomotion in animal models. We also examined adverse events and neurotransmitter signalling. We synthesised data with random-effects meta-analyses. Results: Nine randomised trials provided data for two TAAR1 agonists (ulotaront and ralmitaront), and 15 animal studies for 10 TAAR1 agonists. Ulotaront and ralmitaront demonstrated few differences compared to placebo in improving overall symptoms in adults with acute schizophrenia (N=4 studies, n=1291 participants; SMD=0.15, 95%CI: -0.05, 0.34), and ralmitaront was less efficacious than risperidone (N=1, n=156, SMD=-0.53, 95%CI: -0.86, -0.20). Large placebo response was observed in ulotaront phase-III trials. Limited evidence suggested a relatively benign side-effect profile for TAAR1 agonists, although nausea and sedation were common after a single dose of ulotaront. In animal studies, TAAR1 agonists improved hyperlocomotion compared to control (N=13 studies, k=41 experiments, SMD=1.01, 95%CI: 0.74, 1.27), but seemed less efficacious compared to dopamine D 2 receptor antagonists (N=4, k=7, SMD=-0.62, 95%CI: -1.32, 0.08). Limited human and animal data indicated that TAAR1 agonists may regulate presynaptic dopaminergic signalling. Conclusions: TAAR1 agonists may be less efficacious than dopamine D 2 receptor antagonists already licensed for schizophrenia. The results are preliminary due to the limited number of drugs examined, lack of longer-term data, publication bias, and assay sensitivity concerns in trials associated with large placebo response. Considering their unique mechanism of action, relatively benign side-effect profile and ongoing drug development, further research is warranted. Registration: PROSPERO-ID: CRD42023451628.


There is a need for more effective treatments for psychosis, including schizophrenia. Psychosis is a collection of mental health symptoms, such as hearing voices, that can cause distress and impair functioning. These symptoms are thought to be caused by changes in a chemical messenger system in the brain called dopamine. Currently used antipsychotic medications target brain receptors that respond to dopamine. They are not effective in some people and can cause uncomfortable adverse events, such as weight gain and movement disorders, especially with long-term use. A new type of drug is the trace amine-associated receptor 1 (TAAR1) agonists. These drugs act on different brain receptors that can affect the activity of the dopamine system, but do not directly bind to dopamine receptors. We aimed to understand if TAAR1 agonists can reduce symptoms of psychosis, what adverse events they might have, and how they work. We did this by reviewing and collating all available evidence until November 2023. This is a "living" systematic review, so it will be regularly updated in the future. We looked at both human and animal studies investigating TAAR1 agonists. Human studies suggested that two TAAR1 agonists (namely, ulotaront or ralmitaront) might have little to no effect on reducing symptoms of psychosis compared to placebo in people with schizophrenia. They seemed to cause fewer adverse events than current antipsychotics. Data from animal studies suggested that TAAR1 agonists had some positive effects but potentially smaller than other antipsychotics. There were little to no data from both human and animal studies about how TAAR1 agonists actually work. From the current evidence we are uncertain about these results. With the ongoing development of new TAAR1 agonists, more evidence is needed to understand their potential role in the treatment of psychosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA