Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 130(1): 80-95, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34809444

RESUMO

BACKGROUND: The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS: We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.


Assuntos
Proteínas Nucleares/metabolismo , Splicing de RNA , Receptores de LDL/genética , Colesterol/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Mutação , Proteínas Nucleares/genética , Receptores de LDL/metabolismo , Spliceossomos/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 43(7): e270-e278, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128917

RESUMO

BACKGROUND: Autosomal dominant hypercholesterolemia (ADH) is due to deleterious variants in LDLR, APOB, or PCSK9 genes. Double heterozygote for these genes induces a more severe phenotype. More recently, a new causative variant of heterozygous ADH was identified in APOE. Here we study the phenotype of 21 adult patients, double heterozygotes for rare LDLR and rare APOE variants (LDLR+APOE) in a national wide French cohort. METHODS: LDLR, APOB, PCSK9, and APOE genes were sequenced in 5743 probands addressed for ADH genotyping. The lipid profile and occurrence of premature atherosclerotic cardiovascular diseases were compared between the LDLR+APOE carriers (n=21) and the carriers of the same LDLR causative variants alone (n=22). RESULTS: The prevalence of LDLR+APOE carriers in this French ADH cohort is 0.4%. Overall, LDL (low-density lipoprotein)-cholesterol concentrations were 23% higher in LDLR+APOE patients than in LDLR patients (9.14±2.51 versus 7.43±1.59 mmol/L, P=0.0221). When only deleterious or probably deleterious variants were considered, the LDL-cholesterol concentrations were 46% higher in LDLR+APOE carriers than in LDLR carriers (10.83±3.45 versus 7.43±1.59 mmol/L, P=0.0270). Two patients exhibited a homozygous familial hypercholesterolemia phenotype (LDL-cholesterol >13 mmol/L). Premature atherosclerotic cardiovascular disease was more common in LDLR+APOE patients than in LDLR carriers (70% versus 30%, P=0.026). CONCLUSIONS: Although an incomplete penetrance should be taken into account for APOE variant classification, these results suggest an additive effect of deleterious APOE variants on ADH phenotype highlighting the relevance of APOE sequencing.


Assuntos
Aterosclerose , Hiperlipoproteinemia Tipo II , Humanos , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , LDL-Colesterol , Fenótipo , Aterosclerose/epidemiologia , Aterosclerose/genética , Apolipoproteínas B/genética , Apolipoproteínas E/genética , Mutação , Heterozigoto
3.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628605

RESUMO

Primary hypercholesterolemia is characterized by elevated LDL-cholesterol (LDL-C) levels isolated in autosomal dominant hypercholesterolemia (ADH) or associated with elevated triglyceride levels in familial combined hyperlipidemia (FCHL). Rare APOE variants are known in ADH and FCHL. We explored the APOE molecular spectrum in a French ADH/FCHL cohort of 5743 unrelated probands. The sequencing of LDLR, PCSK9, APOB, and APOE revealed 76 carriers of a rare APOE variant, with no mutation in LDLR, PCSK9, or APOB. Among the 31 APOE variants identified here, 15 are described in ADH, 10 in FCHL, and 6 in both probands. Five were previously reported with dyslipidemia and 26 are novel, including 12 missense, 5 synonymous, 2 intronic, and 7 variants in regulatory regions. Sixteen variants were predicted as pathogenic or likely pathogenic, and their carriers had significantly lower polygenic risk scores (wPRS) than carriers of predicted benign variants. We observed no correlation between LDL-C levels and wPRS, suggesting a major effect of APOE variants. Carriers of p.Leu167del were associated with a severe phenotype. The analysis of 11 probands suggests that carriers of an APOE variant respond better to statins than carriers of a LDLR mutation. Altogether, we show that the APOE variants account for a significant contribution to ADH and FCHL.


Assuntos
Apolipoproteínas E , Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
4.
Genet Med ; 23(1): 111-122, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32855533

RESUMO

PURPOSE: Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease with often unrecognized inherited forms. We sought to identify novel pathogenic variants associated with autosomal dominant inheritance of TAAD. METHODS: We analyzed exome sequencing data from 35 French TAAD families and performed next-generation sequencing capture panel of genes in 1114 unrelated TAAD patients. Functional effects of pathogenic variants identified were validated in cell, tissue, and mouse models. RESULTS: We identified five functional variants in THSD4 of which two heterozygous variants lead to a premature termination codon. THSD4 encodes ADAMTSL6 (member of the ADAMTS/L superfamily), a microfibril-associated protein that promotes fibrillin-1 matrix assembly. The THSD4 variants studied lead to haploinsufficiency or impaired assembly of fibrillin-1 microfibrils. Thsd4+/- mice showed progressive dilation of the thoracic aorta. Histologic examination of aortic samples from a patient carrying a THSD4 variant and from Thsd4+/- mice, revealed typical medial degeneration and diffuse disruption of extracellular matrix. CONCLUSION: These findings highlight the role of ADAMTSL6 in aortic physiology and TAAD pathogenesis. They will improve TAAD management and help develop new targeted therapies.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Proteínas ADAM , Dissecção Aórtica/genética , Animais , Aneurisma da Aorta Torácica/genética , Exoma/genética , Fibrilina-1/genética , Humanos , Camundongos
5.
Diabetes Obes Metab ; 20(4): 943-953, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29205760

RESUMO

AIM: To investigate whether plasma concentrations of proprotein-convertase-subtilisin/kexin type 9 (PCSK9) were associated with cardiovascular (CV) events in two cohorts of patients with type 2 diabetes mellitus. METHODS: We considered patients from the DIABHYCAR (n = 3137) and the SURDIAGENE (n = 1468) studies. Baseline plasma PCSK9 concentration was measured using an immunofluorescence assay. In post hoc, but preplanned, analyses we assessed the relationship between PCSK9 and the following endpoints: (1) a combined endpoint of major CV events: CV death, non-fatal myocardial infarction (MI), stroke and heart failure-related hospital admission; (2) a composite of all CV events: MI, stroke, heart failure-related hospital admission, coronary/peripheral angioplasty or bypass, CV death; (3) MI; (4) stroke/transient ischaemic attack (TIA); and (5) CV death. RESULTS: In the DIABHYCAR study, plasma PCSK9 tertiles were associated with the incidence of MI, all CV events and stroke/TIA (P for trend <.05). In adjusted Cox analysis, plasma PCSK9 was associated, independently of classic risk factors, with the incidence of major CV events (hazard ratio [HR] for 1-unit increase of log[PCSK9] 1.28 [95% confidence interval {CI} 1.06-1.55]), the incidence of MI (HR 1.66 [95% CI 1.05-2.63]), and the incidence of all CV events (HR 1.22 [95% CI 1.04-1.44]), but not with CV death. Plasma PCSK9 was not associated with the incidence of CV disease in the participants of the SURDIAGENE study with high CV risk treated with statins and insulin. CONCLUSIONS: We found that PCSK9 was inconsistently associated with CV events in populations with type 2 diabetes. The association may depend on the level of CV risk and the background treatment.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/sangue , Pró-Proteína Convertase 9/sangue , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/terapia , Angiopatias Diabéticas/diagnóstico , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Fatores de Risco
6.
Am J Hum Genet ; 95(6): 736-43, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434006

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is an autosomal-dominant disorder with major life-threatening complications. The disease displays great genetic heterogeneity with some forms allelic to Marfan and Loeys-Dietz syndrome, and an important number of cases still remain unexplained at the molecular level. Through whole-exome sequencing of affected members in a large TAAD-affected family, we identified the c.472C>T (p.Arg158(∗)) nonsense mutation in MFAP5 encoding the extracellular matrix component MAGP-2. This protein interacts with elastin fibers and the microfibrillar network. Mutation screening of 403 additional probands identified an additional missense mutation of MFAP5 (c.62G>T [p.Trp21Leu]) segregating with the disease in a second family. Functional analyses performed on both affected individual's cells and in vitro models showed that these two mutations caused pure or partial haploinsufficiency. Thus, alteration of MAGP-2, a component of microfibrils and elastic fibers, appears as an initiating mechanism of inherited TAAD.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Proteínas Contráteis/genética , Glicoproteínas/genética , Haploinsuficiência/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Dissecção Aórtica/fisiopatologia , Aneurisma da Aorta Torácica/fisiopatologia , Criança , Códon sem Sentido , Proteínas Contráteis/metabolismo , Exoma/genética , Feminino , Fibroblastos , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA
7.
Curr Atheroscler Rep ; 19(12): 49, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29038906

RESUMO

PURPOSE OF REVIEW: In 2003, Abifadel et al. (Nat. Genet. 34:154-156, 2003) identified PCSK9, encoding proprotein convertase subtilisin/kexin type 9, as the third causal gene for autosomal dominant hypercholesterolemia. This review focuses on the main steps from this major breakthrough in familial hypercholesterolemia (FH) to the latest clinical trials with the anti-PCSK9 antibodies. RECENT FINDINGS: The year 2015 was remarkable in cardiovascular disease through the field of cholesterol. Nearly 30 years after the discovery of statins, a new class of effective lipid-lowering drugs has emerged: the anti-PCSK9 antibodies. The discovery of the first gain-of-function mutations of PCSK9 in FH rapidly became the center of interest of researchers worldwide. Preclinical and clinical studies launched by pharmaceutical companies led to the first three anti-PCSK9 antibodies, two of which (evolocumab and alirocumab) reduce LDL cholesterol levels by 50-60% and received FDA and European Medicines Agency approvals in 2015 on top of statin therapy. Recently, results of the Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk (FOURIER) trial, the outcome trial of evolocumab over 2.2 years, showed a reduction of 15-20% in the risk of major cardiovascular outcomes in high-risk patients receiving statin therapy. Results of ODYSSEY OUTCOMES trial, evaluating the effect of alirocumab in 18,000 patients with established CVD are also eagerly awaited in 2018. The evolution of research on PCSK9, starting from the discovery of the first set of mutations in PCSK9 in FH in 2003, is an amazing example of successful translational research. It shows how rigorous and powered genetic analyses can lead to the discovery of a new class of lipid-lowering drugs that give hope in fighting high cholesterol levels and their cardiovascular complications.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Inibidores de PCSK9 , Pró-Proteína Convertase 9/genética , Ensaios Clínicos como Assunto , Humanos , Hipercolesterolemia/tratamento farmacológico , Mutação
8.
Mol Cell Probes ; 29(1): 1-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25239117

RESUMO

The c.61_63dupCTG (L10) allele of rs72555377 polymorphism in PCSK9 has been reported to be associated with low-density lipoprotein-cholesterol (LDL-C) levels and with a decreased risk of coronary artery disease (CAD). We investigated the effect of two known alleles for rs72555377, L10 and L11, on the risk of CAD in a Tunisian cohort (218 patients diagnosed by angiography and 125 control subjects). Two subgroups of patients were defined by their level of stenosis: ≥50% for CAD and <50% for no-CAD. The genotypes were obtained by the size measurement of fluorescent-labeled PCR products. We identified a novel allele for the rs72555377 polymorphism: an in-frame deletion, c.61_63delCTG (L8). The frequency of the L10 allele was significantly higher in the no-CAD subgroup than in the CAD subgroup (0.210 vs 0.114, p = 0.045), and than in the subgroup of CAD patients presenting a stenosis ≥50% in two or three major coronary arteries (0.210 vs 0.125, p = 0.028). Multiple regression analysis showed that the L10 allele was significantly associated with a reduced risk of CAD (p = 0.049, OR = 0.51[0.26-1.00]), and with its reduced severity (p = 0.045, OR = 0.44[0.20-0.98]). The L10 allele is associated with a reduced risk and severity of CAD, seemingly independently of its LDL-lowering effect, suggesting a direct effect of PCSK9 on atherogenesis.


Assuntos
Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , População Branca/genética , Idoso , Alelos , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Pró-Proteína Convertase 9 , Análise de Regressão , Deleção de Sequência , Tunísia
9.
Curr Atheroscler Rep ; 16(9): 439, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25052769

RESUMO

A decade after our discovery of the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in cholesterol metabolism through the identification of the first mutations leading to hypercholesterolemia, PCSK9 has become one of the most promising targets in cholesterol and cardiovascular diseases. This challenging work in the genetics of hypercholesterolemia paved the way for a plethora of studies around the world allowing the characterization of PCSK9, its expression, its impact on reducing the abundance of LDL receptor, and the identification of loss-of-function mutations in hypocholesterolemia. We highlight the different steps of this adventure and review the published clinical trials especially those with the anti-PCSK9 antibodies evolocumab (AMG 145) and alirocumab (SAR236553/REGN727), which are in phase III trials. The promising results in lowering LDL cholesterol levels raise hope that the PCSK9 adventure will lead, after the large and long-term ongoing phase III studies evaluating efficacy and safety, to a new anticholesterol pharmacological class.


Assuntos
Anticolesterolemiantes/uso terapêutico , Predisposição Genética para Doença , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Mutação/genética , Pró-Proteína Convertases/genética , Recuperação de Função Fisiológica/genética , Serina Endopeptidases/genética , Animais , Humanos , Pró-Proteína Convertase 9
10.
Hum Mutat ; 34(1): 83-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22949395

RESUMO

Apolipoprotein (apo) E mutants are associated with type III hyperlipoproteinemia characterized by high cholesterol and triglycerides levels. Autosomal dominant hypercholesterolemia (ADH), due to the mutations in the LDLR, APOB, or PCSK9 genes, is characterized by an isolated elevation of cholesterol due to the high levels of low-density lipoproteins (LDLs). We now report an exceptionally large family including 14 members with ADH. Through genome-wide mapping, analysis of regional/functional candidate genes, and whole exome sequencing, we identified a mutation in the APOE gene, c.500_502delTCC/p.Leu167del, previously reported associated with sea-blue histiocytosis and familial combined hyperlipidemia. We confirmed the involvement of the APOE p.Leu167del in ADH, with (1) a predicted destabilization of an alpha-helix in the binding domain, (2) a decreased apo E level in LDLs, and (3) a decreased catabolism of LDLs. Our results show that mutations in the APOE gene can be associated with bona fide ADH.


Assuntos
Apolipoproteínas E/genética , Predisposição Genética para Doença/genética , Hiperlipoproteinemia Tipo II/genética , Mutação , Adolescente , Adulto , Apolipoproteínas E/química , Apolipoproteínas E/metabolismo , Criança , Colesterol/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Cromossomos Humanos Par 19/genética , Saúde da Família , Feminino , Deleção de Genes , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Triglicerídeos/metabolismo , Adulto Jovem
11.
Curr Genomics ; 14(1): 25-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23997648

RESUMO

Autosomal dominant hypercholesterolemia (ADH) is characterized by an isolated elevation of plasmatic low-density lipoprotein (LDL), which predisposes to premature coronary artery disease (CAD) and early death. ADH is largely due to mutations in the low-density lipoprotein receptor gene (LDLR), the apolipoprotein B-100 gene (APOB), or the proprotein convertase subtilisin/kexin type 9 (PCSK9). Early diagnosis and initiation of treatment can modify the disease progression and its outcomes. Therefore, cascade screening protocol with a combination of plasmatic lipid measurements and DNA testing is used to identify relatives of index cases with a clinical diagnosis of ADH. In Tunisia, an attenuated phenotypic expression of ADH was previously reported, indicating that the establishment of a special screening protocol is necessary for this population.

12.
Nat Genet ; 36(8): 855-60, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15235604

RESUMO

Marfan syndrome is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton and cardiovascular systems associated with defects in the gene encoding fibrillin (FBN1) at 15q21.1 (ref. 1). A second type of the disorder (Marfan syndrome type 2; OMIM 154705) is associated with a second locus, MFS2, at 3p25-p24.2 in a large French family (family MS1). Identification of a 3p24.1 chromosomal breakpoint disrupting the gene encoding TGF-beta receptor 2 (TGFBR2) in a Japanese individual with Marfan syndrome led us to consider TGFBR2 as the gene underlying association with Marfan syndrome at the MSF2 locus. The mutation 1524G-->A in TGFBR2 (causing the synonymous amino acid substitution Q508Q) resulted in abnormal splicing and segregated with MFS2 in family MS1. We identified three other missense mutations in four unrelated probands, which led to loss of function of TGF-beta signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor-suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.


Assuntos
Síndrome de Marfan/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Sequência de Aminoácidos , Cromossomos Humanos Par 3 , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais/genética
13.
Nat Genet ; 34(2): 154-6, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12730697

RESUMO

Autosomal dominant hypercholesterolemia (ADH; OMIM144400), a risk factor for coronary heart disease, is characterized by an increase in low-density lipoprotein cholesterol levels that is associated with mutations in the genes LDLR (encoding low-density lipoprotein receptor) or APOB (encoding apolipoprotein B). We mapped a third locus associated with ADH, HCHOLA3 at 1p32, and now report two mutations in the gene PCSK9 (encoding proprotein convertase subtilisin/kexin type 9) that cause ADH. PCSK9 encodes NARC-1 (neural apoptosis regulated convertase), a newly identified human subtilase that is highly expressed in the liver and contributes to cholesterol homeostasis.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Mutação , Serina Endopeptidases/genética , Substituição de Aminoácidos , Cromossomos Humanos Par 1/genética , Feminino , Genes Dominantes , Ligação Genética , Humanos , Hiperlipoproteinemia Tipo II/enzimologia , Fígado/enzimologia , Masculino , Linhagem , Pró-Proteína Convertase 9 , Pró-Proteína Convertases
14.
J Clin Lipidol ; 17(5): 643-658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37550151

RESUMO

BACKGROUND: The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE: This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS: HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS: Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION: Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Lipoproteínas HDL/genética , Proteômica , Hiperlipoproteinemia Tipo II/genética , Relação Estrutura-Atividade , Receptores de LDL/genética , Mutação
15.
Hum Mutat ; 33(8): 1175-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22553128

RESUMO

Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E(2) (PGE(2)) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole-exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE(2), but unlike HPGD-deficient patients, also excreted considerable quantities of the PGE(2) metabolite, PGE-M. Clinical differences between the two groups were also identified, notably that SLCO2A1-deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity.


Assuntos
Transportadores de Ânions Orgânicos/genética , Osteoartropatia Hipertrófica Primária/etiologia , Osteoartropatia Hipertrófica Primária/genética , Mielofibrose Primária/genética , Adolescente , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Osteoartropatia Hipertrófica Primária/metabolismo , Prostaglandinas/metabolismo , Adulto Jovem
16.
Metabolites ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736437

RESUMO

In adults, elevated levels of circulating Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) have been associated with increased Low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and worse cardiovascular outcomes. However, few studies analyzed the relation between PCSK9 and lipid parameters in pediatric populations. The aim of our study is to evaluate the distribution and the correlation of serum PCSK9 levels with lipid parameters in a sample of Lebanese school children. Using an immunofluorescence assay, we measured serum PCSK9 levels in 681 school children recruited from ten public and private Lebanese schools. We analyzed the association between PCSK9 and age, sex, Body Mass Index (BMI), and lipid parameters (total cholesterol (TC), LDL-C, TG, High-density lipoprotein cholesterol (HDL-C), non-HDL-C, and lipoprotein (a) (Lp(a)). Serum PCSK9 levels were significantly correlated with TC, LDL-C, and non-HDL-C (p value < 0.0001) but not with TG, HDL-C, and Lp(a). PCSK9 levels were also significantly higher in children with high TC, LDL-C, and non-HDL-C (p values = 0.0012, 0.0002, 0.001, respectively). No significant gender differences in PCSK9 were found. In addition, no significant associations between PCSK9 and both age and BMI percentiles were observed. In girls, no difference in PCSK9 values was observed according to menarche while in boys, testosterone levels were not significantly associated with PCSK9. Serum PCSK9 levels were significantly correlated with TC, LDL-C, and non-HDL-C levels. Further studies are needed to find if PCSK9 measurements have an additional value to predict future cardiovascular outcomes in pediatric populations.

17.
Front Genet ; 13: 961028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061186

RESUMO

Familial chylomicronemia syndrome is a rare autosomal recessive disorder of lipoprotein metabolism characterized by the presence of chylomicrons in fasting plasma and an important increase in plasma triglycerides (TG) levels that can exceed 22.58 mmol/l. The disease is associated with recurrent episodes of abdominal pain and pancreatitis, eruptive cutaneous xanthomatosis, lipemia retinalis, and hepatosplenomegaly. A consanguineous Syrian family who migrated to Lebanon was referred to our laboratory after perceiving familial chylomicronemia syndrome in two children. The LPL and PCSK9 genes were sequenced and plasma PCSK9 levels were measured. Sanger sequencing of the LPL gene revealed the presence of the p.(Val227Phe) pathogenic variant in exon 5 at the homozygous state in the two affected children, and at the heterozygous state in the other recruited family members. Interestingly, PCSK9 levels in homozygous carriers of the p.(Val227Phe) were ≈50% lower than those in heterozygous carriers of the variant (p-value = 0.13) and ranged between the 5th and the 7.5th percentile of PCSK9 levels in a sample of Lebanese children of approximately the same age group. Moreover, this is the first reported case of individuals carrying simultaneously an LPL pathogenic variant and PCSK9 variants, the L10 and L11 leucine insertion, which can lower and raise low-density lipoprotein cholesterol (LDL-C) levels respectively. TG levels fluctuated concomitantly between the two children, were especially high following the migration from a country to another, and were reduced under a low-fat diet. This case is crucial to raise public awareness on the risks of consanguineous marriages to decrease the emergence of inherited autosomal recessive diseases. It also highlights the importance of the early diagnosis and management of these diseases to prevent serious complications, such as recurrent pancreatitis in the case of familial hyperchylomicronemia.

18.
Metabolites ; 12(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35323704

RESUMO

Autosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype.

19.
Atherosclerosis ; 328: 11-22, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058468

RESUMO

Apolipoprotein E (apoE) is a major apolipoprotein involved in lipoprotein metabolism. It is a polymorphic protein and different isoforms are associated with variations in lipid and lipoprotein levels and thus cardiovascular risk. The isoform apoE4 is associated with an increase in LDL-cholesterol levels and thus a higher cardiovascular risk compared to apoE3. Whereas, apoE2 is associated with a mild decrease in LDL-cholesterol levels. In the presence of other risk factors, apoE2 homozygotes could develop type III hyperlipoproteinemia (familial dysbetalipoproteinemia or FD), an atherogenic disorder characterized by an accumulation of remnants of triglyceride-rich lipoproteins. Several rare APOE gene variants were reported in different types of dyslipidemias including FD, familial combined hyperlipidemia (FCH), lipoprotein glomerulopathy and bona fide autosomal dominant hypercholesterolemia (ADH). ADH is characterized by elevated LDL-cholesterol levels leading to coronary heart disease, and due to molecular alterations in three main genes: LDLR, APOB and PCSK9. The identification of the APOE-p.Leu167del variant as the causative molecular element in two different ADH families, paved the way to considering APOE as a candidate gene for ADH. Due to non mendelian interacting factors, common genetic and environmental factors and perhaps epigenetics, clinical presentation of lipid disorders associated with APOE variants often strongly overlap. More studies are needed to determine the spectrum of APOE implication in each of the diseases, notably ADH, in order to improve clinical and genetic diagnosis, prognosis and patient management. The purpose of this review is to comment on these APOE variants and on the molecular and clinical overlaps between dyslipidemias.


Assuntos
Dislipidemias , Hiperlipoproteinemia Tipo II , Apolipoproteínas E , Dislipidemias/diagnóstico , Dislipidemias/genética , Humanos , Pró-Proteína Convertase 9 , Receptores de LDL
20.
Artigo em Inglês | MEDLINE | ID: mdl-33545665

RESUMO

We hypothesized that polymorphisms of genes involved in the prostaglandin pathway could be associated with COPD. In this study we explored the involvement of genetic polymorphisms in PTGS2, PTGER2 and PTGER4 genes in the development and severity of COPD and their effects on plasma concentrations of inflammatory/oxidative stress markers. We identified genotypes of PTGS2, PTGER2 and PTGER4 SNPs in a Tunisian cohort including COPD patients (n = 138) and control subjects (n = 216) using PCR-RFLP and PCR TaqMan. Pulmonary function (FEV1 and FVC) were assessed by plethsmography. PGE2, PGD2 and cytokine plasma (IL-6, IL-18, TNF-α, TGF-ß) concentrations were measured using ELISA and colorimetric standard methods were used to determine oxidative stress concentrations. Genotype frequencies of rs2745557 in PTGS2 and rs2075797 in PTGER2 were different between COPD cases and controls. There was no correlation between these polymorphisms and lung function parameters. For rs2745557, the A allele frequency was higher in COPD cases than in controls. For rs2075797, carriers of the GG genotype were more frequent in the COPD group than in controls. Only rs2745557 in PTGS2 had an effect on PGD2 and cytokine plasma concentrations. PGD2 was significantly decreased in COPD patients with the GA or AA genotypes. In contrast, IL-18 and NO plasma concentrations were increased in COPD rs2745557 A allele carriers as compared to homozygous GG subjects. Our findings suggest that rs2745557 in PTGS2 and rs2075797 in PTGER2 are associated with COPD development but not with its severity.


Assuntos
Ciclo-Oxigenase 2/genética , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Receptores de Prostaglandina E Subtipo EP2/genética , Idoso , Alelos , Estudos de Casos e Controles , Estudos de Coortes , Citocinas/sangue , Dinoprostona/sangue , Feminino , Frequência do Gene , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Prostaglandina D2/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Receptores de Prostaglandina E Subtipo EP4/genética , Fatores de Risco , Tunísia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA