Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0124523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792001

RESUMO

IMPORTANCE: Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.


Assuntos
Aciltransferases , Retículo Endoplasmático , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza B , Lipoilação , Ácido Palmítico , Replicação Viral , Humanos , Aciltransferases/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Vírus da Influenza B/química , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Lipoilação/genética , Mutação , Ácido Palmítico/metabolismo
2.
J Virol ; 97(1): e0109122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475767

RESUMO

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Assuntos
Arbovírus , Genoma Viral , Filogenia , Animais , Humanos , Camundongos , Arbovírus/genética , China/epidemiologia , Genômica , Gado/virologia
3.
J Biol Chem ; 298(3): 101727, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35157850

RESUMO

Assembly and budding of the influenza C virus is mediated by three membrane proteins: the hemagglutinin-esterase-fusion glycoprotein (HEF), the matrix protein (CM1), and the ion channel (CM2). Here we investigated whether the formation of the hexagonal HEF arrangement, a distinctive feature of influenza C virions is important for virus budding. We used super resolution microscopy and found 250-nm sized HEF clusters at the plasma membrane of transfected cells, which were insensitive to cholesterol extraction and cytochalasin treatment. Overexpression of either CM1, CM2, or HEF caused the release of membrane-enveloped particles. Cryo-electron microscopy of the latter revealed spherical vesicles exhibiting the hexagonal HEF clusters. We subsequently used reverse genetics to identify elements in HEF required for this clustering. We found that deletion of the short cytoplasmic tail of HEF reduced virus titer and hexagonal HEF arrays, suggesting that an interaction with CM1 stabilizes the HEF clusters. In addition, we substituted amino acids at the surface of the closed HEF conformation and identified specific mutations that prevented virus rescue, others reduced virus titers and the number of HEF clusters in virions. Finally, mutation of two regions that mediate contacts between trimers in the in-situ structure of HEF was shown to prevent rescue of infectious virus particles. Mutations at residues thought to mediate lateral interactions were revealed to promote intracellular trafficking defects. Taken together, we propose that lateral interactions between the ectodomains of HEF trimers are a driving force for virus budding, although CM2 and CM1 also play important roles in this process.


Assuntos
Gammainfluenzavirus , Influenza Humana , Proteínas da Matriz Viral , Microscopia Crioeletrônica , Humanos , Influenza Humana/virologia , Gammainfluenzavirus/genética , Gammainfluenzavirus/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus , Liberação de Vírus
4.
J Virol ; 96(6): e0175121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34986000

RESUMO

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


Assuntos
Infecções por Alphavirus , Alphavirus , Substituição de Aminoácidos , Proteínas do Envelope Viral , Alphavirus/genética , Alphavirus/patogenicidade , Infecções por Alphavirus/virologia , Animais , Sítios de Ligação/genética , Células Cultivadas , Modelos Animais de Doenças , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
5.
PLoS Pathog ; 17(4): e1009554, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891658

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped positive-strand RNA virus in the Arteiviridae family, is a major pathogen affecting pigs worldwide. The membrane (glyco)proteins GP5 and M form a disulfide-linked dimer, which is a major component of virions. GP5/M are required for virus budding, which occurs at membranes of the exocytic pathway. Both GP5 and M feature a short ectodomain, three transmembrane regions, and a long cytoplasmic tail, which contains three and two conserved cysteines, respectively, in close proximity to the transmembrane span. We report here that GP5 and M of PRRSV-1 and -2 strains are palmitoylated at the cysteines, regardless of whether the proteins are expressed individually or in PRRSV-infected cells. To completely prevent S-acylation, all cysteines in GP5 and M have to be exchanged. If individual cysteines in GP5 or M were substituted, palmitoylation was reduced, and some cysteines proved more important for efficient palmitoylation than others. Neither infectious virus nor genome-containing particles could be rescued if all three cysteines present in GP5 or both present in M were replaced in a PRRSV-2 strain, indicating that acylation is essential for virus growth. Viruses lacking one or two acylation sites in M or GP5 could be rescued but grew to significantly lower titers. GP5 and M lacking acylation sites form dimers and GP5 acquires Endo-H resistant carbohydrates in the Golgi apparatus suggesting that trafficking of the membrane proteins to budding sites is not disturbed. Likewise, GP5 lacking two acylation sites is efficiently incorporated into virus particles and these viruses exhibit no reduction in cell entry. We speculate that multiple fatty acids attached to GP5 and M in the endoplasmic reticulum are required for clustering of GP5/M dimers at Golgi membranes and constitute an essential prerequisite for virus assembly.


Assuntos
Lipoilação/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Células Cultivadas , Cricetinae , Ácidos Graxos Monoinsaturados/metabolismo , Células HEK293 , Haplorrinos , Humanos , Síndrome Respiratória e Reprodutiva Suína/patologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Suínos , Montagem de Vírus/fisiologia
6.
Cell Microbiol ; 23(6): e13322, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629465

RESUMO

Influenza A viruses contain two S-acylated proteins, the ion channel M2 and the glycoprotein hemagglutinin (HA). Acylation of the latter is essential for virus replication. Here we analysed the expression of each of the 23 members of the family of ZDHHC acyltransferases in human airway cells, the site of virus replication. RT-PCR revealed that every ZDHHC acyltransferase (except ZDHHC19) is expressed in A549 and Calu cells. Interestingly, expression of one ZDHHC, ZDHHC22, is upregulated in virus-infected cells; this effect is more pronounced after infection with an avian compared to a human virus strain. The viral protein NS1 triggers ZDHHC22 expression in transfected cells, whereas recombinant viruses lacking a functional NS1 gene did not cause ZDHHC22 upregulation. CRISPR/Cas9 technology was then used to knock-out the ZDHHC22 gene in A549 cells. However, acylation of M2 and HA was not reduced, as analysed for intracellular HA and M2 and the stoichiometry of S-acylation of HA incorporated into virus particles did not change according to MALDI-TOF mass spectrometry analysis. Comparative mass spectrometry of palmitoylated proteins in wt and ΔZDHHC22 cells identified 25 potential substrates of ZDHHC22 which might be involved in virus replication.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Vírus da Influenza A/fisiologia , Proteínas de Membrana/genética , Regulação para Cima , Proteínas não Estruturais Virais/genética , Células A549 , Acilação , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Cães , Técnicas de Inativação de Genes , Humanos , Células Madin Darby de Rim Canino , Replicação Viral
7.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361998

RESUMO

Porcine reproductive and respiratory syndrome virus is a positive-stranded RNA virus of the family Arteriviridae. The Gp5/M dimer, the major component of the viral envelope, is required for virus budding and is an antibody target. We used alphafold2, an artificial-intelligence-based system, to predict a credible structure of Gp5/M. The short disulfide-linked ectodomains lie flat on the membrane, with the exception of the erected N-terminal helix of Gp5, which contains the antibody epitopes and a hypervariable region with a changing number of carbohydrates. The core of the dimer consists of six curved and tilted transmembrane helices, and three are from each protein. The third transmembrane regions extend into the cytoplasm as amphiphilic helices containing the acylation sites. The endodomains of Gp5 and M are composed of seven ß-strands from each protein, which interact via ß-strand seven. The area under the membrane forms an open cavity with a positive surface charge. The M and Orf3a proteins of coronaviruses have a similar structure, suggesting that all four proteins are derived from the same ancestral gene. Orf3a, like Gp5/M, is acylated at membrane-proximal cysteines. The role of Gp5/M during virus replication is discussed, in particular the mechanisms of virus budding and models of antibody-dependent virus neutralization.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas do Envelope Viral/metabolismo , Epitopos , Replicação Viral
8.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563480

RESUMO

Lipid modification of viral proteins with fatty acids of different lengths (S-acylation) is crucial for virus pathogenesis. The reaction is catalyzed by members of the DHHC family and proceeds in two steps: the autoacylation is followed by the acyl chain transfer onto protein substrates. The crystal structure of human DHHC20 (hDHHC20), an enzyme involved in the acylation of S-protein of SARS-CoV-2, revealed that the acyl chain may be inserted into a hydrophobic cavity formed by four transmembrane (TM) α-helices. To test this model, we used molecular dynamics of membrane-embedded hDHHC20 and its mutants either in the absence or presence of various acyl-CoAs. We found that among a range of acyl chain lengths probed only C16 adopts a conformation suitable for hDHHC20 autoacylation. This specificity is altered if the small or bulky residues at the cavity's ceiling are exchanged, e.g., the V185G mutant obtains strong preferences for binding C18. Surprisingly, an unusual hydrophilic ridge was found in TM helix 4 of hDHHC20, and the responsive hydrophilic patch supposedly involved in association was found in the 3D model of the S-protein TM-domain trimer. Finally, the exchange of critical Thr and Ser residues in the spike led to a significant decrease in its S-acylation. Our data allow further development of peptide/lipid-based inhibitors of hDHHC20 that might impede replication of Corona- and other enveloped viruses.


Assuntos
Aciltransferases , COVID-19 , Acil Coenzima A/metabolismo , Acilação , Aciltransferases/química , Aciltransferases/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Simulação de Dinâmica Molecular , SARS-CoV-2 , Especificidade por Substrato/fisiologia
9.
Mol Biol Evol ; 37(9): 2641-2654, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407507

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown once again that coronavirus (CoV) in animals are potential sources for epidemics in humans. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen of swine with a worldwide distribution. Here, we implemented and described an approach to analyze the epidemiology of PDCoV following its emergence in the pig population. We performed an integrated analysis of full genome sequence data from 21 newly sequenced viruses, along with comprehensive epidemiological surveillance data collected globally over the last 15 years. We found four distinct phylogenetic lineages of PDCoV, which differ in their geographic circulation patterns. Interestingly, we identified more frequent intra- and interlineage recombination and higher virus genetic diversity in the Chinese lineages compared with the USA lineage where pigs are raised in different farming systems and ecological environments. Most recombination breakpoints are located in the ORF1ab gene rather than in genes encoding structural proteins. We also identified five amino acids under positive selection in the spike protein suggesting a role for adaptive evolution. According to structural mapping, three positively selected sites are located in the N-terminal domain of the S1 subunit, which is the most likely involved in binding to a carbohydrate receptor, whereas the other two are located in or near the fusion peptide of the S2 subunit and thus might affect membrane fusion. Finally, our phylogeographic investigations highlighted notable South-North transmission as well as frequent long-distance dispersal events in China that could implicate human-mediated transmission. Our findings provide new insights into the evolution and dispersal of PDCoV that contribute to our understanding of the critical factors involved in CoVs emergence.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/genética , Genoma Viral , Glicoproteína da Espícula de Coronavírus/genética , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética , Animais , Evolução Biológica , China/epidemiologia , Coronavirus/classificação , Coronavirus/patogenicidade , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Variação Genética , Genômica , Humanos , Modelos Moleculares , Epidemiologia Molecular , Fases de Leitura Aberta , Filogenia , Filogeografia , Estrutura Secundária de Proteína , Recombinação Genética , Seleção Genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos/virologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Proteínas Virais/metabolismo
10.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694941

RESUMO

M2 of influenza virus functions as a proton channel during virus entry. In addition, an amphipathic helix in its cytoplasmic tail plays a role during budding. It targets M2 to the assembly site where it inserts into the inner membrane leaflet to induce curvature that causes virus scission. Since vesicularization of membranes can be performed by a variety of amphiphilic peptides, we used reverse genetics to investigate whether the peptides can substitute for M2's helix. Virus could not be generated if M2's helix was deleted or replaced by a peptide predicted not to form an amphiphilic helix. In contrast, viruses could be rescued if the M2 helix was exchanged by helices known to induce membrane curvature. Infectious virus titers were marginally reduced if M2 contains the helix of the amphipathic lipid packing sensor from the Epsin N-terminal homology domain or the nonnatural membrane inducer RW16. Transmission electron microscopy of infected cells did not reveal unequivocal evidence that virus budding or membrane scission was disturbed in any of the mutants. Instead, individual virus mutants exhibit other defects in M2, such as reduced surface expression, incorporation into virus particles, and ion channel activity. The protein composition and specific infectivity were also altered for mutant virions. We conclude that the presence of an amphiphilic helix in M2 is essential for virus replication but that other helices can replace its basic (curvature-inducing) function.IMPORTANCE Influenza virus is unique among enveloped viruses since it does not rely on the cellular ESCRT machinery for budding. Instead, viruses encode their own scission machine, the M2 protein. M2 is targeted to the edge of the viral assembly site, where it inserts an amphiphilic helix into the membrane to induce curvature. Cellular proteins utilize a similar mechanism for scission of vesicles. We show that the helix of M2 can be replaced by helices from cellular proteins with only small effects on virus replication. No evidence was obtained that budding is disturbed, but individual mutants exhibit other defects in M2 that explain the reduced virus titers. In contrast, no virus could be generated if the helix of M2 is deleted or replaced by irrelevant sequences. These experiments support the concept that M2 requires an amphiphilic helix to induce membrane curvature, but its biophysical properties are more important than the amino acid sequence.


Assuntos
Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/metabolismo , Proteínas da Matriz Viral/metabolismo , Replicação Viral/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Cães , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HEK293 , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/ultraestrutura , Células Madin Darby de Rim Canino , Mutagênese , Peptídeos/metabolismo , Carga Viral , Vírion/metabolismo , Liberação de Vírus
11.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32404529

RESUMO

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in a pandemic. Here, we used X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptors allows the definition of residues important for binding. From the 20 amino acids in ACE2 that contact S, up to 7 can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or acquisition of N-glycosylation sites located near the S interface. Of note, pigs and dogs, which are not infected or are not effectively infected and have only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with that from bat coronavirus strain RaTG13 (Bat-CoV-RaTG13) and pangolin coronavirus (Pangolin-CoV) strain hCoV-19/pangolin/Guangdong/1/2019 revealed that the latter contains only one substitution, whereas Bat-CoV-RaTG13 exhibits five. However, ACE2 of pangolin exhibits seven changes relative to human ACE2, and a similar number of substitutions is present in ACE2 of bats, raccoon dogs, and civets, suggesting that SARS-CoV-2 may not be especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-CoV-2.IMPORTANCE SARS-CoV-2 is threatening people worldwide, and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear, and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes, indicating that the species barrier might be low. Exceptions are dogs and especially pigs, which revealed relatively low ACE2 expression levels in the respiratory tract. Monitoring of animals is necessary to prevent the generation of a new coronavirus reservoir. Finally, our analysis also showed that SARS-CoV-2 may not be specifically adapted to any of its putative intermediate hosts.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Enzima de Conversão de Angiotensina 2 , Animais , Animais Domésticos , Betacoronavirus/metabolismo , COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/metabolismo , Cães , Glicosilação , Interações Hospedeiro-Patógeno , Humanos , Modelos Animais , Pandemias , Animais de Estimação , Pneumonia Viral/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Guaxinins/virologia , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de Proteína , Suínos , Viverridae/virologia
12.
Curr Opin Colloid Interface Sci ; 55: 101479, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34149296

RESUMO

We provide here a general view on the interactions of surfactants with viruses, with a particular emphasis on how such interactions can be controlled and employed for inhibiting the infectivity of enveloped viruses, including coronaviruses. The aim is to provide to interested scientists from different fields, including chemistry, physics, biochemistry, and medicine, an overview of the basic properties of surfactants and (corona)viruses, which are relevant to understanding the interactions between the two. Various types of interactions between surfactant and virus are important, and they act on different components of a virus such as the lipid envelope, membrane (envelope) proteins and nucleocapsid proteins. Accordingly, this cannot be a detailed account of all relevant aspects but instead a summary that bridges between the different disciplines. We describe concepts and cover a selection of the relevant literature as an incentive for diving deeper into the relevant material. Our focus is on more recent developments around the COVID-19 pandemic caused by SARS-CoV-2, applications of surfactants against the virus, and on the potential future use of surfactants for pandemic relief. We also cover the most important aspects of the historical development of using surfactants in combatting virus infections. We conclude that surfactants are already playing very important roles in various directions of defence against viruses, either directly, as in disinfection, or as carrier components of drug delivery systems for prophylaxis or treatment. By designing tailor-made surfactants, and consequently, advanced formulations, one can expect more and more effective use of surfactants, either directly as antiviral compounds or as part of more complex formulations.

13.
Microb Pathog ; 160: 105193, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536503

RESUMO

As a novel member of the Orthomyxoviridae, influenza D virus (IDV) was firstly isolated from swine. However, cattle were found to serve as its primary reservoir. The study of IDV emergence can shed light into the dynamics of zoonotic infections and interspecies transmission. Although there is an increasing number of strains and sequenced IDV strains, their origin, epidemiology and evolutionary dynamics remain unclear. In this study, we reconstruct the diversity and evolutionary dynamics of IDVs. Molecular detection of swine tissue samples shows that six IDV positive samples were identified in the Eastern China. Phylogenetic analyses suggest three major IDV lineages designated as D/Japan, D/OK and D/660 as well as intermediate lineages. IDVs show strong association with geographical location indicating a high level of local transmission, which suggests IDVs tend to establish a local lineage of in situ evolution. In addition, the D/OK lineage widely circulates in swine in Eastern China, and all of the Chinese virus isolates form a distinct sub-clade (D/China sub-lineage). Furthermore, we identified important amino acids in the HEF gene under positive selection that might affect its receptor binding cavity relevant for its broader cell tropism. The combined results highlight that more attention should be paid to the potential threat of IDV to livestock and farming in China.


Assuntos
Doenças dos Bovinos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animais , Bovinos , Evolução Molecular , Infecções por Orthomyxoviridae/veterinária , Filogenia , Suínos , Thogotovirus/genética
14.
Biochem J ; 477(1): 285-303, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31872235

RESUMO

Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one cysteine located at the cytoplasmic border of the transmembrane region (TMR). M2 is palmitoylated at a cysteine positioned in an amphiphilic helix near the TMR. The enzymes catalyzing acylation of HA and M2 have not been identified, but zinc finger DHHC domain-containing (ZDHHC) palmitoyltransferases are candidates. We used a siRNA library to knockdown expression of each of the 23 human ZDHHCs in HA-expressing HeLa cells. siRNAs against ZDHHC2 and 8 had the strongest effect on acylation of HA as demonstrated by Acyl-RAC and confirmed by 3H-palmitate labeling. CRISPR/Cas9 knockout of ZDHHC2 and 8 in HAP1 cells, but also of the phylogenetically related ZDHHCs 15 and 20 strongly reduced acylation of group 1 and group 2 HAs and of M2, but individual ZDHHCs exhibit slightly different substrate preferences. These ZDHHCs co-localize with HA at membranes of the exocytic pathway in a human lung cell line. ZDHHC2, 8, 15 and 20 are not required for acylation of the HA-esterase-fusion protein of Influenza C virus that contains only stearate at one transmembrane cysteine. Knockout of these ZDHHCs also did not compromise acylation of HA of Influenza B virus that contains two palmitoylated cysteines in its cytoplasmic tail. Results are discussed with respect to the acyl preferences and possible substrate recognition features of the identified ZDHHCs.


Assuntos
Aciltransferases/metabolismo , Gammainfluenzavirus/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Vírus da Influenza B/metabolismo , Influenza Humana/virologia , Células A549 , Acilação , Animais , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino
15.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118253

RESUMO

Hemagglutinin (HA) of influenza virus is incorporated into cholesterol-enriched nanodomains of the plasma membrane. Phylogenetic group 2 HAs contain the conserved cholesterol consensus motif (CCM) YKLW in the transmembrane region. We previously reported that mutations in the CCM retarded intracellular transport of HA and decreased its nanodomain association. Here, we analyzed whether cholesterol interacts with the CCM. Incorporation of photocholesterol into HA was significantly reduced if the whole CCM is replaced by alanine, both using immunoprecipitated HA and when HA is embedded in the membrane. We next used reverse genetics to investigate the significance of the CCM for virus replication. No virus was rescued if the whole motif is exchanged (YKLW4A); singly (LA) or doubly (YK2A and LW2A) mutated virus showed decreased titers and a comparative fitness disadvantage. In polarized cells, transport of HA mutants to the apical membrane was not disturbed. Reduced amounts of HA and cholesterol were incorporated into the viral membrane. Mutant viruses exhibit a decrease in hemolysis, which is only partially corrected if the membrane is replenished with cholesterol. More specifically, viruses have a defect in hemifusion, as demonstrated by fluorescence dequenching. Cells expressing HA YKLW4A fuse with erythrocytes, but the number of events is reduced. Even after acidification unfused erythrocytes remain cell bound, a phenomenon not observed with wild-type HA. We conclude that cholesterol binding to a group 2 HA is essential for virus replication. It has pleiotropic effects on virus assembly and membrane fusion, mainly on lipid mixing and possibly a preceding step.IMPORTANCE The glycoprotein HA is a major pathogenicity factor of influenza viruses. Whereas the structure and function of HA's ectodomain is known in great detail, similar data for the membrane-anchoring part of the protein are missing. Here, we demonstrate that the transmembrane region of a group 2 HA interacts with cholesterol, the major lipid of the plasma membrane and the defining element of the viral budding site nanodomains of the plasma membrane. The cholesterol binding motif is essential for virus replication. Its partial removal affects various steps of the viral life cycle, such as assembly of new virus particles and their subsequent cell entry via membrane fusion. A cholesterol binding pocket in group 2 HAs might be a promising target for a small lipophilic drug that inactivates the virus.


Assuntos
Colesterol/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H7N1/crescimento & desenvolvimento , Replicação Viral , Motivos de Aminoácidos , Animais , Sítios de Ligação , Análise Mutacional de DNA , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/genética , Células Madin Darby de Rim Canino , Ligação Proteica , Genética Reversa
16.
J Infect Dis ; 219(11): 1705-1715, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30590733

RESUMO

BACKGROUND: Pseudorabies virus (PRV) causes Aujeszky's disease in pigs and can be transmitted to other mammals, including humans. In the current study, we systematically studied the interspecies transmission and evolutionary history of PRV. METHODS: We performed comprehensive analysis on the phylodynamics, selection, and structural biology to summarize the phylogenetic and adaptive evolution of PRV based on all available full-length and major glycoprotein sequences. RESULTS: PRV can be divided into 2 main clades with frequent interclade and intraclade recombination. Clade 2.2 (variant PRV) is currently the most prevalent genotype worldwide, and most commonly involved in cross-species transmission events (including humans). We also found that the population size of clade 2.2 has increased since 2011, and the effective reproduction number was >1 from 2011 to 2016, indicating that PRV may be still circulating in swine herds and is still a risk in relation with cross-species transmission in China. Of note, we identified amino acid sites in some important glycoproteins gB, gC, gD, and gE that may be associated with PRV adaptation to new hosts and immune escape to vaccines. CONCLUSIONS: Our study provides important genetic insight into the interspecies transmission and evolution of PRV within and between different hosts that warrant additional surveillance.


Assuntos
Variação Genética , Herpesvirus Suídeo 1/genética , Pseudorraiva/transmissão , Doenças dos Suínos/virologia , Animais , Evolução Biológica , China/epidemiologia , Genótipo , Glicoproteínas/genética , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Humanos , Filogenia , Pseudorraiva/epidemiologia , Pseudorraiva/virologia , Recombinação Genética , Suínos , Doenças dos Suínos/transmissão , Proteínas Virais/genética , Virulência , Zoonoses
17.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769343

RESUMO

Glycoprotein 3 (GP3) of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) consists of a cleaved signal peptide, a highly glycosylated domain, a short hydrophobic region, and an unglycosylated C-terminal domain. GP3 is supposed to form a complex with GP2 and GP4 in virus particles, but secretion of GP3 from cells has also been reported. We analyzed the membrane topology of GP3 from various PRRSV strains. A fraction of the protein is secreted from transfected cells, GP3 from PRRSV-1 strains to a greater extent than GP3 from PRRSV-2 strains. This secretion behavior is reversed after exchange of the variable C-terminal domain. A fluorescence protease protection assay shows that the C terminus of GP3, fused to green fluorescent protein (GFP), is resistant to proteolytic digestion in permeabilized cells. Furthermore, glycosylation sites inserted into the C-terminal part of GP3 are used. Both experiments indicate that the C terminus of GP3 is translocated into the lumen of the endoplasmic reticulum. Deletion of the conserved hydrophobic region greatly enhances secretion of GP3, and fusion of this domain to GFP promotes membrane anchorage. Bioinformatics suggests that the hydrophobic region forms an amphipathic helix. Accordingly, exchanging only a few amino acids in its hydrophilic face prevents secretion of GP3 and in its hydrophobic face enhances it. Exchanging the latter amino acids in the context of the viral genome did not affect release of virions, but released particles were not infectious. In sum, GP3 exhibits an unusual hairpin-like membrane topology that might explain why a fraction of the protein is secreted.IMPORTANCE PRRSV is the most important pathogen in the pork industry. It causes persistent infections that lead to reduced weight gain of piglets; highly pathogenic strains even kill 90% of an infected pig population. PRRSV cannot be eliminated from pig farms by vaccination due to the large amino acid variability between the existing strains, especially in the glycoproteins. Here, we analyzed basic structural features of GP3 from various PRRSV strains. We show that the protein exhibits an unusual hairpin-like membrane topology; membrane anchoring might occur via an amphipathic helix. This rather weak membrane anchor explains why a fraction of the protein is secreted from cells. Interestingly, PRRSV-1 strains secrete more GP3 than PRRSV-2. We speculate that secreted GP3 plays a role during PRRSV infection of pigs: it might serve as a decoy to distract antibodies away from virus particles.


Assuntos
Membrana Celular , Glicoproteínas , Fusão de Membrana , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas Virais , Substituição de Aminoácidos , Animais , Células CHO , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cricetulus , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Cell Microbiol ; 19(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27696627

RESUMO

The Influenza A virus nucleoprotein (NP) is the major protein component of the genomic viral ribonucleoprotein (vRNP) complexes, which are the replication- and transcription-competent units of Influenza viruses. Early during infection, NP mediates import of vRNPs into the host cell nucleus where viral replication and transcription take place; also newly synthesized NP molecules are targeted into the nucleus, enabling coreplicational assembly of progeny vRNPs. NP reportedly acts as regulatory factor during infection, and it is known to be involved in numerous interactions with host cell proteins. Yet, the NP-host cell interplay is still poorly understood. Here, we report that NP significantly interacts with the nuclear compartment and displays distinct affinities for different subnuclear structures. NP subnuclear behavior was studied by expression of fluorescent NP fusion proteins - including obligate monomeric NP - and site-specific fluorescence photoactivation measurements. We found that NP constructs accumulate in subnuclear domains frequently found adjacent to or overlapping with promyelocytic leukemia bodies and Cajal bodies. Targeting of NP to Cajal bodies could further be demonstrated in the context of virus infection. We hypothesize that by targeting functional nuclear organization, NP might either link viral replication to specific cellular machinery or interfere with host cell processes.


Assuntos
Núcleo Celular/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/virologia , Nucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Células A549 , Animais , Núcleo Celular/virologia , Cães , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Transporte Proteico
19.
Cell Microbiol ; 18(5): 692-704, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26518983

RESUMO

The only spike of influenza C virus, the hemagglutinin-esterase-fusion glycoprotein (HEF) combines receptor binding, receptor hydrolysis and membrane fusion activities. Like other hemagglutinating glycoproteins of influenza viruses HEF is S-acylated, but only with stearic acid at a single cysteine located at the cytosol-facing end of the transmembrane region. Previous studies established the essential role of S-acylation of hemagglutinin for replication of influenza A and B virus by affecting budding and/or membrane fusion, but the function of acylation of HEF was hitherto not investigated. Using reverse genetics we rescued a virus containing non-stearoylated HEF, which was stable during serial passage and showed no competitive fitness defect, but the growth rate of the mutant virus was reduced by one log. Deacylation of HEF does neither affect the kinetics of its plasma membrane transport nor the protein composition of virus particles. Cryo-electron microscopy showed that the shape of viral particles and the hexagonal array of spikes typical for influenza C virus were not influenced by this mutation indicating that virus budding was not disturbed. However, the extent and kinetics of haemolysis were reduced in mutant virus at 37°C, but not at 33°C, the optimal temperature for virus growth, suggesting that non-acylated HEF has a defect in membrane fusion under suboptimal conditions.


Assuntos
Gammainfluenzavirus/patogenicidade , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Influenza Humana/virologia , Proteínas Virais de Fusão/química , Acilação , Sequência de Aminoácidos/genética , Microscopia Crioeletrônica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Humanos , Influenza Humana/genética , Gammainfluenzavirus/química , Gammainfluenzavirus/genética , Estearatos/química , Proteínas Virais de Fusão/metabolismo
20.
Cell Microbiol ; 18(1): 125-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26243691

RESUMO

Viral glycoproteins are highly variable in their primary structure, but on the other hand feature a high functional conservation to fulfil their versatile tasks during the pathogenic life cycle. Typically, all protein domains are optimized in that indispensable functions can be assigned to small conserved motifs or even individual amino acids. The cytoplasmic tail of many viral spike proteins, although of particular relevance for the virus biology, is often only insufficiently characterized. Hemagglutinin (HA), the receptor-binding protein of the influenza virus comprises a short cytoplasmic tail of 13 amino acids that exhibits three highly conserved palmitoylation sites. However, the particular importance of these modifications and the tail in general for intracellular trafficking and lateral membrane organization remains elusive. In this study, we generated HA core proteins consisting of transmembrane domain, cytoplasmic tail and a minor part of the ectodomain, tagged with a yellow fluorescent protein. Different mutation and truncation variants of these chimeric proteins were investigated using confocal microscopy, to characterize the role of cytoplasmic tail and palmitoylation for the intracellular trafficking to plasma membrane and Golgi apparatus. In addition, we assessed raft partitioning of the variants by Foerster resonance energy transfer with an established raft marker. We revealed a substantial influence of the cytoplasmic tail length on the intracellular distribution and surface exposure of the proteins. A complete removal of the tail hampers a physiological trafficking of the protein, whereas a partial truncation can be compensated by cytoplasmic palmitoylations. Plasma membrane raft partitioning on the other hand was found to imperatively require palmitoylations, and the cysteine at position 551 turned out to be of most relevance. Our data shed further light on the tight interconnection between cytoplasmic elements and intracellular trafficking and suggest a function of HA palmitoylations in both lateral sorting and anterograde trafficking of the glycoprotein.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hospedeiro-Patógeno , Microdomínios da Membrana/metabolismo , Orthomyxoviridae/fisiologia , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Células CHO , Cricetulus , Complexo de Golgi/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia Confocal , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA