Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 185(12): 3831-3837, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34296525

RESUMO

Polydactyly is a hallmark of GLI3 pathogenic variants, with Greig cephalopolysyndactyly syndrome and Pallister-Hall syndrome being the two main associated clinical presentations. Homozygous GLI3 variants are rare instances in the literature, and mendelian dominance is the accepted framework for GLI3-related diseases. Herein, we report three unrelated probands, presenting with polydactyly, and homozygous variants in the GLI3 gene. First, a 10-year-old girl, whose parents were first-degree cousins, presented with bilateral postaxial polydactyly of the hands, developmental delay and multiple malformations. Second, a male newborn, whose parents were first-degree cousins, presented with isolated bilateral postaxial polysyndactyly of the hands and the feet. Third, an adult male, whose parents were first-degree cousins, had bilateral mesoaxial polydactyly of the hands, with severe intellectual disability and multiple malformations. All three probands carried homozygous GLI3 variants. Strikingly, the parents also carried the child's variant, in the heterozygous state, without any clinical sign of GLI3 disease. Given the clinical presentation of our patients, the rarity and predicted high pathogenicity of the variants observed, and the absence of other pathogenic variants, we suggest that these GLI3 homozygous variants are causal. Moreover, the parents were heterozygous for the observed variants, but were clinically unremarkable, suggesting that these variants are hypomorphic alleles.


Assuntos
Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Polidactilia/genética , Proteína Gli3 com Dedos de Zinco/genética , Adulto , Criança , Feminino , Heterozigoto , Homozigoto , Humanos , Recém-Nascido , Masculino , Linhagem , Polidactilia/patologia
2.
Am J Hum Genet ; 97(2): 311-8, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166481

RESUMO

KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies.


Assuntos
Proteínas de Ciclo Celular/genética , Transtornos da Motilidade Ciliar/genética , Códon sem Sentido/genética , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/genética , Hidrocefalia/genética , Fenótipo , Síndrome de Costela Curta e Polidactilia/genética , Sequência de Bases , Transtornos da Motilidade Ciliar/patologia , Europa Oriental , Evolução Fatal , Efeito Fundador , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
3.
Am J Med Genet A ; 176(5): 1091-1098, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681083

RESUMO

Corpus callosum (CC) is the major brain commissure connecting homologous areas of cerebral hemispheres. CC anomalies (CCAs) are the most frequent brain anomalies leading to variable neurodevelopmental outcomes making genetic counseling difficult in the absence of a known etiology that might inform the prognosis. Here, we used whole exome sequencing, and a targeted capture panel of syndromic CCA known causal and candidate genes to screen a cohort of 64 fetuses with CCA observed upon autopsy, and 34 children with CCA and intellectual disability. In one fetus and two patients, we identified three novel de novo mutations in ZBTB20, which was previously shown to be causal in Primrose syndrome. In addition to CCA, all cases presented with additional features of Primrose syndrome including facial dysmorphism and macrocephaly or megalencephaly. All three variations occurred within two out of the five zinc finger domains of the transcriptional repressor ZBTB20. Through homology modeling, these variants are predicted to result in local destabilization of each zinc finger domain suggesting subsequent abnormal repression of ZBTB20 target genes. Neurohistopathological analysis of the fetal case showed abnormal regionalization of the hippocampal formation as well as a reduced density of cortical upper layers where originate most callosal projections. Here, we report novel de novo ZBTB20 mutations in three independent cases with characteristic features of Primrose syndrome including constant CCA. Neurohistopathological findings in fetal case corroborate the observed key role of ZBTB20 during hippocampal and neocortical development. Finally, this study highlights the crucial role of ZBTB20 in CC development in human.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Calcinose/diagnóstico , Calcinose/genética , Otopatias/diagnóstico , Otopatias/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adolescente , Sequência de Aminoácidos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/química , Conformação de Ácido Nucleico , Linhagem , Fenótipo , Conformação Proteica , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Fatores de Transcrição/química
4.
JAMA ; 320(6): 557-565, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30120476

RESUMO

Importance: Cell-free DNA (cfDNA) tests are increasingly being offered to women in the first trimester of pregnancies at a high risk of trisomy 21 to decrease the number of required invasive fetal karyotyping procedures and their associated miscarriages. The effect of this strategy has not been evaluated. Objective: To compare the rates of miscarriage following invasive procedures only in the case of positive cfDNA test results vs immediate invasive testing procedures (amniocentesis or chorionic villus sampling) in women with pregnancies at high risk of trisomy 21 as identified by first-trimester combined screening. Design, Setting, and Participants: Randomized clinical trial conducted from April 8, 2014, to April 7, 2016, in 57 centers in France among 2111 women with pregnancies with a risk of trisomy 21 between 1 in 5 and 1 in 250 following combined first-trimester screening. Interventions: Patients were randomized to receive either cfDNA testing followed by invasive testing procedures only when cfDNA tests results were positive (n = 1034) or to receive immediate invasive testing procedures (n = 1017). The cfDNA testing was performed using an in-house validated method based on next-generation sequencing. Main Outcomes and Measures: The primary outcome was number of miscarriages before 24 weeks' gestation. Secondary outcomes included cfDNA testing detection rate for trisomy 21. The primary outcome underwent 1-sided testing; secondary outcomes underwent 2-sided testing. Results: Among 2051 women who were randomized and analyzed (mean age, 36.3 [SD, 5.0] years), 1997 (97.4%) completed the trial. The miscarriage rate was not significantly different between groups at 8 (0.8%) vs 8 (0.8%), for a risk difference of -0.03% (1-sided 95% CI, -0.68% to ∞; P = .47). The cfDNA detection rate for trisomy 21 was 100% (95% CI, 87.2%-100%). Conclusions and Relevance: Among women with pregnancies at high risk of trisomy 21, offering cfDNA screening, followed by invasive testing if cfDNA test results were positive, compared with invasive testing procedures alone, did not result in a significant reduction in miscarriage before 24 weeks. The study may have been underpowered to detect clinically important differences in miscarriage rates. Trial Registration: ClinicalTrials.gov Identifier: NCT02127515.


Assuntos
Aborto Espontâneo/etiologia , Amniocentese/efeitos adversos , Ácidos Nucleicos Livres/sangue , Amostra da Vilosidade Coriônica/efeitos adversos , Síndrome de Down/diagnóstico , Testes Genéticos/métodos , Resultado da Gravidez/epidemiologia , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/prevenção & controle , Adulto , Transtornos Cromossômicos/diagnóstico , Feminino , Morte Fetal , Humanos , Nascido Vivo , Gravidez , Segundo Trimestre da Gravidez , Fatores de Risco , Sensibilidade e Especificidade
5.
Fetal Pediatr Pathol ; 37(6): 411-417, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30595068

RESUMO

INTRODUCTION: Beckwith-Wiedemann syndrome (BWS) is the most common overgrowth syndrome. Clinical features are highly variable, including occasional posterior fossa malformations but no femoral shortening. CASE REPORT: We report two fetuses with BWS associated with short femurs and corpus callosum hypoplasia. Case 2 was growth restricted. BWS was confirmed by molecular studies showing a loss of methylation at ICR2 at 11p15 chromosomic region in case 1 and a gain of methylation at ICR1 and a loss of methylation at ICR2 locus in case 2. CONCLUSION: Although the phenotype and the genotype of BWS is now well-known, the presence of corpus callosum abnormalities and short femurs expand the phenotypic spectrum of the disorder.


Assuntos
Agenesia do Corpo Caloso/genética , Síndrome de Beckwith-Wiedemann/patologia , Fêmur/anormalidades , Feto , Humanos , Masculino
6.
Cytogenet Genome Res ; 151(3): 115-118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273668

RESUMO

Segmental aneusomies are usually associated with clinical consequences, but an increasing number of nonpathogenic cytogenetically visible as well as large cryptic chromosomal imbalances have been reported. Here, we report a 3.6-Mb Xq21.33 microduplication detected prenatally on a female fetus which was inherited from a phenotypically normal mother and grandfather. It is assumed that male patients harboring Xq or Xp duplication present with syndromic intellectual disability because of functional disomy of the corresponding genes. Female carriers are generally asymptomatic because of preferential inactivation of the abnormal X. In the present case, the 3.6-Mb-duplicated segment encompasses only 2 genes, DIAPH2 and RPL4A. Since the asymptomatic grandfather carries the duplication, we hypothesize that these genes are not dosage sensitive and/or involved in cognitive function. Our observation further illustrates that large copy number variants can be associated with a normal phenotype, especially where gene density is low. Reporting rare cases of large genomic imbalances without a phenotypic effect can be very helpful, especially for genetic counseling in the prenatal setting.


Assuntos
Duplicação Cromossômica/genética , Cromossomos Humanos X/genética , Transtornos dos Cromossomos Sexuais/diagnóstico , Adulto , Proteínas de Transporte/genética , Variações do Número de Cópias de DNA , Feminino , Forminas , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteínas Ribossômicas/genética , Transtornos dos Cromossomos Sexuais/genética , Inativação do Cromossomo X
7.
Am J Med Genet A ; 173(8): 2088-2096, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28544599

RESUMO

Individuals with trisomic conditions like Down syndrome and Edwards syndrome are prone to certain types of malignancy. However, for Patau syndrome (constitutional trisomy 13), which occurs in 1/10,000-1/20,000 live births, the tumor profile has not been well characterized. An awareness of susceptibility to malignancies can improve care of affected individuals, as well as further our understanding of the contribution of trisomy to carcinogenesis. Therefore, we conducted an extensive review of the literature; we found 17 malignancies reported in individuals with Patau syndrome. These comprised eight embryonic tumors, three leukemias, two malignant germ cell tumors, two carcinomas, a malignant brain tumor, and a sarcoma. Benign tumors were mainly extragonadal teratomas. The small number of reported malignant tumors suggests that there is not an increased risk of cancer in the context of trisomy 13. The tumor profile in Patau syndrome differs from that observed in Edwards syndrome (trisomy 18) and Down syndrome (trisomy 21), suggesting that the supernumerary chromosome 13 could promote particular tumor formations as it does particular malformations. No general and direct relationships of tumor occurrence with organ weight, congenital malformations, histological changes, or presence of tumor suppressor genes on chromosome 13 were observed. However, some tumors were found in tissues whose growth and development are controlled by genes mapping to chromosome 13. Recent reports of successful outcomes following surgical treatment and adapted chemotherapy indicate that treatment of cancer is possible in Patau syndrome.


Assuntos
Neoplasias/fisiopatologia , Síndrome da Trissomia do Cromossomo 13/fisiopatologia , Trissomia/fisiopatologia , Humanos , Neoplasias/complicações , Síndrome da Trissomia do Cromossomo 13/complicações
8.
Am J Med Genet C Semin Med Genet ; 172(3): 296-306, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27474103

RESUMO

Constitutional trisomy 18 causes Edwards syndrome, which is characterized by intellectual disability and a particular set of malformations. Although this condition carries high mortality during prenatal and early postnatal life, some of the rare infants who survive the first months develop benign and malignant tumors. To determine the tumor profile associated with Edwards syndrome, we performed a systematic review of the literature. This review reveals a tumor profile differing from those of Down (trisomy 21) and Patau (trisomy 13) syndromes. The literature covers 45 malignancies: 29 were liver cancers, mainly hepatoblastomas found in Japanese females; 13 were kidney tumors, predominantly nephroblastomas; 1 was neuroblastoma; 1 was a Hodgkin disease; and 1 was acute myeloid leukemia in an infant with both trisomy 18 and type 1 neurofibromatosis. No instances of the most frequent malignancies of early life-cerebral tumors, germ cell tumors, or leukemia--are reported in children with pure trisomy 18. Tumor occurrence does not appear to correlate with body weight, tissue growth, or cancer genes mapping to chromosome 18. Importantly, the most recent clinical histories report successful treatment; this raises ethical concerns about cancer treatment in infants with Edwards syndrome. In conclusion, knowledge of the Edwards' syndrome tumor profile will enable better clinical surveillance in at-risk organs (i.e., liver, kidney). This knowledge also provides clues to understanding oncogenesis, including the probably reduced frequency of some neoplasms in infants and children with this genetic condition. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias/etiologia , Trissomia , Carcinogênese , Pré-Escolar , Cromossomos Humanos Par 18 , Humanos , Lactente , Recém-Nascido , Neoplasias/diagnóstico , Neoplasias/patologia , Trissomia/patologia , Síndrome da Trissomía do Cromossomo 18
9.
Am J Med Genet A ; 170A(1): 239-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26437074

RESUMO

Molecular cytogenetics, particularly array-CGH, opened the way to the « genotype first approach ¼ and for the discovery of new micro rearrangement syndromes. This was the case for the 8q24.3 microdeletion syndrome. Here, we describe the phenotype of a fetus with a 8q24.3 deletion. This rare condition has to be considered as a contiguous genes syndrome because its phenotype is generated by the SCRIB and PUF60 adjacent gene endophenotypes. The fetus presented atrioventricular septal defect and hypoplastic aortic arch, facial dysmorphism, microretrognathia, dysmorphic ears, clinodactyly of the 5th digit on both hands, mild rocker bottom feet and abnormal third sacral vertebra. This fetus is the first case where the endophenotype produced by SCRIB gene is absent. This case is compared with the previous published cases.


Assuntos
Anormalidades Múltiplas/genética , Feto Abortado/anormalidades , Cromossomos Humanos Par 8/genética , Proteínas de Membrana/genética , Deleção de Sequência/genética , Proteínas Supressoras de Tumor/genética , Adulto , Hibridização Genômica Comparativa , Feminino , Humanos , Cariotipagem , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Diagnóstico Pré-Natal
10.
Birth Defects Res A Clin Mol Teratol ; 106(1): 36-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26663670

RESUMO

BACKGROUND: Corpus callosum malformation (CCM) is the most frequent brain malformation observed at birth. Because CCM is a highly heterogeneous condition, the prognosis of fetuses diagnosed prenatally remains uncertain, making prenatal counseling difficult. METHODS AND RESULTS: We evaluated retrospectively a total of 138 fetuses, 117 with CCM observed on prenatal imaging examination, and 21 after postmortem autopsy. On ultrasound and/or magnetic resonance imaging, CCM was either isolated (N = 40) or associated with other neurological (N = 57) or extra cerebral findings (N = 21/20, respectively). RESULTS: Most fetuses (N = 132) remained without a diagnosis at the time of pregnancy termination. This emphasizes the need to establish a neuropathological classification and to perform a genomic screening using comparative genomic hybridization. A neuropathological examination performed on 138 cases revealed a spectrum of CCMs, classified as follows: agenesis of corpus callosum (55), CC hypoplasia (30), CC dysmorphism (24), and CCM associated with a malformation of cortical development (29). Of interest, after fetopathological examination, only 16/40 malformations were classified as isolated, highlighting the importance of the autopsy following termination of pregnancy. Among the 138 cases, the underlying etiology was found in 46 cases: diabetes (one case), cytomegalovirus infection (one case), 23 chromosome abnormalities, and 21 mendelian conditions. CONCLUSION: In our series of 138 cases of CCM, prenatal and postmortem examinations identified a variety of genetic causes. However, no diagnosis could be established in 67% of cases. The classification based on the underlying neurodevelopmental defects paves the way for further genetic studies and genotype-phenotype correlations.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Aberrações Cromossômicas , Corpo Caloso/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Aborto Eugênico , Adulto , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Autopsia , Hibridização Genômica Comparativa , Corpo Caloso/metabolismo , Feminino , Feto , Expressão Gênica , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-Natal
11.
Nat Genet ; 39(7): 875-81, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558409

RESUMO

Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.


Assuntos
Doenças Cerebelares/genética , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Oftalmopatias/genética , Nefropatias/genética , Proteínas/genética , Animais , Criança , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Síndrome
12.
Am J Hum Genet ; 91(2): 372-8, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883145

RESUMO

Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in unrelated fetal cases with overlapping Meckel and OFD IV syndromes and one homozygous missense mutation in a family with Joubert syndrome. By exploring roles of TCTN3 in human ciliary related functions, we found that TCTN3 is necessary for transduction of the sonic hedgehog (SHH) signaling pathway, as revealed by abnormal processing of GLI3 in patient cells. These results are consistent with the suggested role of its murine ortholog, which forms a complex at the ciliary transition zone with TCTN1 and TCTN2, both of which are also implicated in the transduction of SHH signaling. Overall, our data show the involvement of the transition zone protein TCTN3 in the regulation of the key SHH signaling pathway and that its disruption causes a severe form of ciliopathy, combining features of Meckel and OFD IV syndromes.


Assuntos
Fissura Palatina/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndromes Orofaciodigitais/genética , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Proteínas Reguladoras de Apoptose , Sequência de Bases , Cerebelo/anormalidades , Cerebelo/patologia , Criança , Fissura Palatina/patologia , Exoma/genética , Feto/patologia , Deformidades Congênitas do Pé/patologia , Deformidades Congênitas da Mão/patologia , Proteínas Hedgehog/metabolismo , Homozigoto , Humanos , Dados de Sequência Molecular , Mutação/genética , Síndromes Orofaciodigitais/patologia , Análise de Sequência de DNA , Transdução de Sinais/genética , Adulto Jovem
13.
Cytogenet Genome Res ; 147(2-3): 103-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26735902

RESUMO

Cytogenetic microarray analysis is now the first-tier genetic test used in a postnatal clinical setting to explore genomic imbalances in individuals with developmental disability and/or birth defects. However, in a prenatal setting, this technique is not widely implemented, largely because the clinical impact of some copy number variants (CNVs) remains difficult to assess. This limitation is especially true in France where termination of pregnancy for medical reasons may be performed at any stage of gestation. During a period of 15 months, we investigated 382 fetuses presenting with ultrasound anomalies, using a customized microarray designed to avoid the detection of CNVs raising challenges for genetic counseling. After excluding common aneuploidies, 20/374 (5.3%) fetuses had a pathogenic CNV, among which 12/374 (3.2%) could have been detected by karyotyping, whereas 8/374 (2.1%) were cryptic. Within these 374 cases, 300 were ongoing pregnancies at the time of array comparative genomic hybridization (aCGH) testing. For these pregnancies, we detected 18/300 (6%) pathogenic CNVs, among which 6/300 (2%) were cryptic. Using this approach, only 2/300 (0.6%) of the detected CNVs raised difficulties for genetic counseling. This study confirms the added value of this strategy in a prenatal clinical setting to minimize ethical issues for genetic counseling while enhancing the detection of genomic imbalances.


Assuntos
Variações do Número de Cópias de DNA , Feto/metabolismo , Testes Genéticos/métodos , Análise em Microsséries/métodos , Ultrassonografia Pré-Natal/métodos , Aberrações Cromossômicas/embriologia , Hibridização Genômica Comparativa , Feminino , Doenças Fetais/diagnóstico , Doenças Fetais/diagnóstico por imagem , Doenças Fetais/genética , França , Aconselhamento Genético , Humanos , Cariotipagem , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Am J Med Genet A ; 167A(1): 111-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25425167

RESUMO

Array comparative genomic hybridization (array CGH) has proven its utility in uncovering cryptic rearrangements in patients with X-linked intellectual disability. In 2009, Giorda et al. identified inherited and de novo recurrent Xp11.23p11.22 microduplications in two males and six females from a wide cohort of patients presenting with syndromic intellectual disability. To date, 14 females and 5 males with an overlapping microduplication have been reported in the literature. To further characterize this emerging syndrome, we collected clinical and microarray data from 17 new patients, 10 females, and 7 males. The Xp11.23p11.2 microduplications detected by array CGH ranged in size from 331 Kb to 8.9 Mb. Five patients harbored 4.5 Mb recurrent duplications mediated by non-allelic homologous recombination between segmental duplications and 12 harbored atypical duplications. The chromosomal rearrangement occurred de novo in eight patients and was inherited in six affected males from three families. Patients shared several common major characteristics including moderate to severe intellectual disability, early onset of puberty, language impairment, and age related epileptic syndromes such as West syndrome and focal epilepsy with activation during sleep evolving in some patients to continuous spikes-and-waves during slow sleep. Atypical microduplications allowed us to identify minimal critical regions that might be responsible for specific clinical findings of the syndrome and to suggest possible candidate genes: FTSJ1 and SHROOM4 for intellectual disability along with PQBP1 and SLC35A2 for epilepsy. Xp11.23p11.22 microduplication is a recently-recognized syndrome associated with intellectual disability, epilepsy, and early onset of puberty in females. In this study, we propose several genes that could contribute to the phenotype.


Assuntos
Cromossomos Humanos X/genética , Estudos de Associação Genética , Duplicações Segmentares Genômicas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Eletroencefalografia , Epilepsia/genética , Feminino , Humanos , Masculino , Fenótipo
15.
Harefuah ; 154(10): 632-6, 676, 2015 Oct.
Artigo em Hebraico | MEDLINE | ID: mdl-26742224

RESUMO

BACKGROUND: Meckel-Gruber syndrome (MKS) is a lethal rare inherited autosomal recessive disease. The syndrome is characterized by multiple congenital anomalies including polycystic kidneys, occipital encephalocele and polydactyly. The presence of two out of these anomalies is sufficient for a definitive diagnosis. At least 11 genes have been reported to-date to underlie MKS. METHODS: In the current study we have retrospectively analyzed all the families at the Ha'Emek Medical Center in which the diagnosis of MKS was determined. RESULTS: In total, 17 affected individuals are reported, originating from 12 sibships. The diagnoses were conducted or suspected by prenatal sonography, and some of the newborns were examined. Polycystic kidneys were present in 94% of cases, occipital encephalocele in 82% and polydactyly in about half of all cases. The underlying genetic cause was identified in 11 of our families, comprising mutations in 7 different genes, revealing high genetic heterogeneity. CONCLUSION: The identification of the genetic basis of MKS in our region allows focused and data-based genetic counseling and serves as an important tool for reproductive decisions, including the prevention of recurrence of pregnancies affected with this lethal syndrome. In the near future we plan to study the prevalence of the different MKS mutations found in each community in order to consider the expansion of national genetic screening in high risk populations.


Assuntos
Árabes/genética , Transtornos da Motilidade Ciliar/epidemiologia , Encefalocele/epidemiologia , Doenças Renais Policísticas/epidemiologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Encefalocele/genética , Encefalocele/fisiopatologia , Feminino , Humanos , Incidência , Recém-Nascido , Israel/epidemiologia , Masculino , Mutação , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/fisiopatologia , Gravidez , Diagnóstico Pré-Natal/métodos , Retinose Pigmentar , Estudos Retrospectivos
16.
Hum Mutat ; 35(1): 137-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166846

RESUMO

Joubert syndrome (JS) is characterized by a distinctive cerebellar structural defect, namely the << molar tooth sign >>. JS is genetically heterogeneous, involving 20 genes identified to date, which are all required for cilia biogenesis and/or function. In a consanguineous family with JS associated with optic nerve coloboma, kidney hypoplasia, and polydactyly, combined exome sequencing and mapping identified a homozygous splice-site mutation in PDE6D, encoding a prenyl-binding protein. We found that pde6d depletion in zebrafish leads to renal and retinal developmental anomalies and wild-type but not mutant PDE6D is able to rescue this phenotype. Proteomic analysis identified INPP5E, whose mutations also lead to JS or mental retardation, obesity, congenital retinal dystrophy, and micropenis syndromes, as novel prenyl-dependent cargo of PDE6D. Mutant PDE6D shows reduced binding to INPP5E, which fails to localize to primary cilia in patient fibroblasts and tissues. Furthermore, mutant PDE6D is unable to bind to GTP-bound ARL3, which acts as a cargo-release factor for PDE6D-bound INPP5E. Altogether, these results indicate that PDE6D is required for INPP5E ciliary targeting and suggest a broader role for PDE6D in targeting other prenylated proteins to the cilia. This study identifies PDE6D as a novel JS disease gene and provides the first evidence of prenyl-binding-dependent trafficking in ciliopathies.


Assuntos
Doenças Cerebelares/genética , Doenças Cerebelares/metabolismo , Cílios/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Retina/anormalidades , Fatores de Ribosilação do ADP/metabolismo , Anormalidades Múltiplas , Animais , Cerebelo/anormalidades , Exoma , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Masculino , Modelos Moleculares , Linhagem , Prenilação de Proteína , Proteômica , Retina/metabolismo , Análise de Sequência de DNA , Peixe-Zebra/anormalidades , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Hum Mutat ; 35(4): 478-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24470203

RESUMO

Mandibulofacial dysostosis, Guion-Almeida type (MFDGA) is a recently delineated multiple congenital anomalies/mental retardation syndrome characterized by the association of mandibulofacial dysostosis (MFD) with external ear malformations, hearing loss, cleft palate, choanal atresia, microcephaly, intellectual disability, oesophageal atresia (OA), congenital heart defects (CHDs), and radial ray defects. MFDGA emerges as a clinically recognizable entity, long underdiagnosed due to highly variable presentations. The main differential diagnoses are CHARGE and Feingold syndromes, oculoauriculovertebral spectrum, and other MFDs. EFTUD2, located on 17q21.31, encodes a component of the major spliceosome and is disease causing in MFDGA, due to heterozygous loss-of-function (LoF) mutations. Here, we describe a series of 36 cases of MFDGA, including 24 previously unreported cases, and we review the literature in order to delineate the clinical spectrum ascribed to EFTUD2 LoF. MFD, external ear anomalies, and intellectual deficiency occur at a higher frequency than microcephaly. We characterize the evolution of the facial gestalt at different ages and describe novel renal and cerebral malformations. The most frequent extracranial malformation in this series is OA, followed by CHDs and skeletal abnormalities. MFDGA is probably more frequent than other syndromic MFDs such as Nager or Miller syndromes. Although the wide spectrum of malformations complicates diagnosis, characteristic facial features provide a useful handle.


Assuntos
Anormalidades Múltiplas/patologia , Anus Imperfurado/patologia , Deformidades Congênitas da Mão/patologia , Perda Auditiva Bilateral/patologia , Deficiência Intelectual/patologia , Disostose Mandibulofacial/patologia , Microcefalia/patologia , Oftalmoplegia/patologia , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Trombocitopenia/patologia , Anormalidades Múltiplas/genética , Anus Imperfurado/genética , Criança , Pré-Escolar , Diagnóstico Diferencial , Orelha Externa/patologia , Feminino , Deformidades Congênitas da Mão/genética , Haploinsuficiência , Perda Auditiva Bilateral/genética , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Disostose Mandibulofacial/genética , Microcefalia/genética , Mutação , Oftalmoplegia/genética , Fenótipo , Gravidez , Diagnóstico Pré-Natal , Trombocitopenia/genética
18.
Cytogenet Genome Res ; 144(3): 178-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25402493

RESUMO

Ultrasound examination performed on a 36-year-old woman at 33 weeks of gestation showed the presence of isolated and bilateral ventriculomegaly in the fetus. Array-based comparative genomic hybridization (array-CGH) performed on uncultured amniocytes at 35 weeks of gestation revealed a 17q21.31 microdeletion. After genetic counseling, the pregnancy was terminated at 37 weeks of gestation. At autopsy, the fetus displayed facial dysmorphic features and triventricular ventriculomegaly. To our knowledge, this is the first case of a 17q21.31 microdeletion detected prenatally. Our report suggests that array-CGH should be performed when severe ventriculomegaly is observed in prenatal ultrasound examination.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Adulto , Amniocentese , Encéfalo/patologia , Cromossomos Humanos Par 17/genética , Hibridização Genômica Comparativa , Feminino , Humanos , Deficiência Intelectual/patologia , Gravidez , Diagnóstico Pré-Natal
19.
Am J Hum Genet ; 87(2): 189-98, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20673863

RESUMO

By using a combination of array comparative genomic hybridization and a candidate gene approach, we identified nuclear factor I/X (NFIX) deletions or nonsense mutation in three sporadic cases of a Sotos-like overgrowth syndrome with advanced bone age, macrocephaly, developmental delay, scoliosis, and unusual facies. Unlike the aforementioned human syndrome, Nfix-deficient mice are unable to gain weight and die in the first 3 postnatal weeks, while they also present with a spinal deformation and decreased bone mineralization. These features prompted us to consider NFIX as a candidate gene for Marshall-Smith syndrome (MSS), a severe malformation syndrome characterized by failure to thrive, respiratory insufficiency, accelerated osseous maturation, kyphoscoliosis, osteopenia, and unusual facies. Distinct frameshift and splice NFIX mutations that escaped nonsense-mediated mRNA decay (NMD) were identified in nine MSS subjects. NFIX belongs to the Nuclear factor one (NFI) family of transcription factors, but its specific function is presently unknown. We demonstrate that NFIX is normally expressed prenatally during human brain development and skeletogenesis. These findings demonstrate that allelic NFIX mutations trigger distinct phenotypes, depending specifically on their impact on NMD.


Assuntos
Anormalidades Múltiplas/genética , Alelos , Códon sem Sentido/genética , Mutação/genética , Fatores de Transcrição NFI/genética , Estabilidade de RNA/genética , Adolescente , Adulto , Sequência de Bases , Criança , Cromossomos Humanos Par 19/genética , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Feminino , Regulação da Expressão Gênica , Testes Genéticos , Humanos , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Fatores de Transcrição NFI/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome
20.
Gastroenterology ; 142(3): 453-462.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155368

RESUMO

BACKGROUND & AIMS: Short-bowel syndrome usually results from surgical resection of the small intestine for diseases such as intestinal atresias, volvulus, and necrotizing enterocolitis. Patients with congenital short-bowel syndrome (CSBS) are born with a substantial shortening of the small intestine, to a mean length of 50 cm, compared with a normal length at birth of 190-280 cm. They also are born with intestinal malrotation. Because CSBS occurs in many consanguineous families, it is considered to be an autosomal-recessive disorder. We aimed to identify and characterize the genetic factor causing CSBS. METHODS: We performed homozygosity mapping using 610,000 K single-nucleotide polymorphism arrays to analyze the genomes of 5 patients with CSBS. After identifying a gene causing the disease, we determined its expression pattern in human embryos. We also overexpressed forms of the gene product that were and were not associated with CSBS in Chinese Hamster Ovary and T84 cells and generated a zebrafish model of the disease. RESULTS: We identified loss-of-function mutations in Coxsackie- and adenovirus receptor-like membrane protein (CLMP) in CSBS patients. CLMP is a tight-junction-associated protein that is expressed in the intestine of human embryos throughout development. Mutations in CLMP prevented its normal localization to the cell membrane. Knock-down experiments in zebrafish resulted in general developmental defects, including shortening of the intestine and the absence of goblet cells. Because goblet cells are characteristic for the midintestine in zebrafish, which resembles the small intestine in human beings, the zebrafish model mimics CSBS. CONCLUSIONS: Loss-of-function mutations in CLMP cause CSBS in human beings, likely by interfering with tight-junction formation, which disrupts intestinal development. Furthermore, we developed a zebrafish model of CSBS.


Assuntos
Intestino Delgado/anormalidades , Mutação de Sentido Incorreto , Receptores Virais/genética , Síndrome do Intestino Curto/genética , Adolescente , Adulto , Animais , Células CHO , Criança , Pré-Escolar , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Intestino Delgado/metabolismo , Masculino , Morfogênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores Virais/metabolismo , Síndrome do Intestino Curto/embriologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/patologia , Transfecção , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA