Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3406-3422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916456

RESUMO

The advent of high-throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho-physio-phenological traits-based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over-expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over-expressing photosynthesis-, endocytosis- and phagosome-linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non-phagotrophic phytoplankton.


Assuntos
Ecossistema , Lagos , Lagos/microbiologia , Fungos/genética , Cadeia Alimentar , Fitoplâncton
2.
Environ Microbiol ; 18(3): 889-903, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26472517

RESUMO

Microbial communities from hypersaline ponds, dominated by halophilic archaea, are considered specific of such extreme conditions. The associated viral communities have accordingly been shown to display specific features, such as similar morphologies among different sites. However, little is known about the genetic diversity of these halophilic viral communities across the Earth. Here, we studied viral communities in hypersaline ponds sampled on the coast of Senegal (8-36% of salinity) using metagenomics approach, and compared them with hypersaline viromes from Australia and Spain. The specificity of hyperhalophilic viruses could first be demonstrated at a community scale, salinity being a strong discriminating factor between communities. For the major viral group detected in all samples (Caudovirales), only a limited number of halophilic Caudovirales clades were highlighted. These clades gather viruses from different continents and display consistent genetic composition, indicating that they represent related lineages with a worldwide distribution. Non-tailed hyperhalophilic viruses display a greater rate of gene transfer and recombination, with uncharacterized genes conserved across different kind of viruses and plasmids. Thus, hypersaline viral communities around the world appear to form a genetically consistent community that are likely to harbour new genes coding for enzymes specifically adapted to these environments.


Assuntos
Caudovirales/genética , Genoma Viral/genética , Lagoas/virologia , Salinidade , Austrália , Caudovirales/isolamento & purificação , Mapeamento Cromossômico , Variação Genética , Metagenômica , Senegal , Espanha
3.
Mol Ecol Resour ; 23(1): 222-232, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35941762

RESUMO

Freshwater is a critical resource for human survival but severely threatened by anthropogenic activities and climate change. These changes strongly impact the abundance and diversity of the microbial communities which are key players in the functioning of these aquatic ecosystems. Although widely documented since the emergence of high-throughput sequencing approaches, the information on these natural microbial communities is scattered among thousands of publications and it is therefore difficult to investigate the temporal dynamics and the spatial distribution of microbial taxa within or across ecosystems. To fill this gap and in the FAIR principles context we built a manually curated and standardized microbial freshwater -omics database (FreshOmics). Based on recognized ontologies (ENVO, MIMICS, GO, ISO), FreshOmics describes 29 different types of freshwater ecosystems and uses standardized attributes to depict biological samples, sequencing protocols and article attributes for more than 2487 geographical locations across 71 countries around the world. The database contains 24,808 sequence identifiers (i.e., Run_Id / Exp_ID, mainly from SRA/DDBJ SRA/ENA, GSA and MG-RAST repositories) covering all sequence-based -omics approaches used to investigate bacteria, archaea, microbial eukaryotes, and viruses. Therefore, FreshOmics allows accurate and comprehensive analyses of microbial communities to answer questions related to their roles in freshwater ecosystems functioning and resilience, especially through meta-analysis studies. This collection also highlights different sort of errors in published works (e.g., wrong coordinates, sample type, material, spelling).


Assuntos
Água Doce , Microbiota , Humanos , Microbiota/genética , Bactérias/genética , Archaea/genética , Sequenciamento de Nucleotídeos em Larga Escala
4.
Front Microbiol ; 7: 130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904006

RESUMO

Microbial eukaryotes play a crucial role in ecosystem functioning and oxygen is considered to be one of the strongest barriers against their local dispersal. However, diversity of microbial eukaryotes in freshwater habitats with oxygen gradients has previously received very little attention. We applied high-throughput sequencing (V4 region of the 18S rRNA gene) in conjunction with quantitative PCR (DNA and RNA) and fluorescent in situ hybridization (FISH) analyses, to provide an unique spatio-temporal analysis of microbial eukaryotes diversity and potential activity in a meromictic freshwater lake (lake Pavin). This study revealed a high genetic diversity of unicellular eukaryotes in the permanent anoxic zone of lake Pavin and allowed the discrimination of active vs. inactive components. Forty-two percent of the OTUs (Operational Taxonomic Units) are exclusively present in the monimolimnion, where Alveolata (Ciliophora and Dinophyceae) and Fungi (Dikarya and Chytrids) are the most active phyla and are probably represented by species capable of anaerobic metabolism. Pigmented eukaryotes (Haptophyceae and Chlorophyceae) are also present and active in this zone, which opens up questions regarding their metabolism.

5.
FEMS Microbiol Ecol ; 83(1): 189-201, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22882302

RESUMO

In the present study, the abundance and phylogenetic diversity of free-living and particle-associated Verrucomicrobia were investigated in a mesotrophic lake by quantitative PCR and sequencing of the 16S rRNA gene. The relative verrucomicrobial 16S rRNA gene abundance accounted for 0.02% to 1.98% of the particle-associated bacteria and 0.52% to 1.64% of the free-living bacteria. In total, 71 operational taxonomic units (OTUs) (n = 303 clones) were identified for particle-associated bacteria, and 59 OTUs (n = 292 clones) were identified for the free-living fraction. This study determined six new putative freshwater Verrucomicrobia clusters. Of these newly defined clusters, two were exclusively represented by particle-associated bacteria (FukuS27, BourFIV). The freshwater Verrucomicrobia clusters CRE-PA29, FukuN18 and CL120-10 appeared to be dominant, comprising 22.3%, 16.15% and 14.61% of the total retrieved OTUs, respectively. The seasonal dynamics of phytoplankton communities resulted in changes in the distinct bacterial phylotypes for both the particle-associated and free-living verrucomicrobial communities. According to canonical correspondence analysis, the diversity of the particle-associated verrucomicrobial communities appeared to be primarily influenced by phytoplankton richness, rotifer abundance and inorganic nutrients, whereas the free-living fraction was correlated with the biomass dynamics of some phytoplankton classes (Chlorophyceae, Chrysophaceae, Desmidiaceae and Zygnemataceae).


Assuntos
Biodiversidade , Lagos/microbiologia , Filogenia , Verrucomicrobia/genética , Microbiologia da Água , Biomassa , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Água Doce/microbiologia , Genes Bacterianos , Fitoplâncton/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Estações do Ano , Verrucomicrobia/classificação , Verrucomicrobia/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA