Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 78: 37-39, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423513

RESUMO

A low cost version to enable high temperature MAS NMR experiments at temperatures of up to 700°C and spinning speeds of up to 10kHz is presented. The method relies on inductive heating using a metal coated rotor insert. The metal coating is accomplished via a two step process involving physical vapor deposition and galvanization.

2.
ACS Omega ; 9(10): 11273-11287, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496973

RESUMO

Next-generation electrochemical energy storage materials are essential in delivering high power for long periods of time. Double-layer carbonaceous materials provide high power density with low energy density due to surface-controlled adsorption. This limitation can be overcome by developing a low-cost, more abundant material that delivers high energy and power density. Herein, we develop layered C3N4 as a sustainable charge storage material for supercapacitor applications. It was thermally polymerized using urea and then protonated with various acids to enhance its charge storage contribution by activating more reaction sites through the exfoliation of the C-N framework. The increased electron-rich nitrogen moieties in the C-N framework material lead to better electrolytic ion impregnation into the electrode, resulting in a 7-fold increase in charge storage compared to the pristine material and other acids. It was found that C3N4 treated with hydrochloric acid showed a very high capacitance of 761 F g-1 at a current density of 20 A g-1 and maintained 100% cyclic retention over 10,000 cycles in a three-electrode configuration, outperforming both the pristine material and other acids. A symmetric device was fabricated using a KOH/LiI gel-based electrolyte, exhibiting a maximum specific capacitance of 175 F g-1 at a current density of 1 A g-1. Additionally, the device showed remarkable power and energy density, reaching 600 W kg-1 and 35 Wh kg-1, with an exceptional cyclic stability of 60% even after 5000 cycles. This study provides an archetype to understand the underlying mechanism of acid protonation and paves the way to a metal-carbon-free environment.

3.
Adv Mater ; 28(44): 9783-9791, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27624093

RESUMO

SnIP is the first atomic-scale double helical semiconductor featuring a 1.86 eV bandgap, high structural and mechanical flexibility, and reasonable thermal stability up to 600 K. It is accessible on a gram scale and consists of a racemic mixture of right- and left-handed double helices composed by [SnI] and [P] helices. SnIP nanorods <20 nm in diameter can be accessed mechanically and chemically within minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA