Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(2): 975-988, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34904658

RESUMO

Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state termed R7A* maintained these phenotypes in laboratory culture but did not transfer the R7A* state to recipients of ICEMlSymR7A following conjugation. We previously demonstrated ICEMlSymR7A transfer and QS are repressed by the antiactivator QseM in R7A populations and that the adjacently-coded DNA-binding protein QseC represses qseM transcription. Here RNA-sequencing revealed qseM expression was repressed in R7A* cells and that RNA antisense to qseC was abundant in R7A but not R7A*. Deletion of the antisense-qseC promoter converted cells into an R7A*-like state. An adjacently coded QseC2 protein bound two operator sites and repressed antisense-qseC transcription. Plasmid overexpression of QseC2 stimulated the R7A* state, which persisted following curing of this plasmid. The epigenetic maintenance of the R7A* state required ICEMlSymR7A-encoded copies of both qseC and qseC2. Therefore, QseC and QseC2, together with their DNA-binding sites and overlapping promoters, form a stable epigenetic switch that establishes binary control over qseM transcription and primes a subpopulation of R7A cells for QS and horizontal transfer.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Mesorhizobium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Ilhas Genômicas , Mesorhizobium/genética , Mesorhizobium/metabolismo , Percepção de Quorum , Simbiose/genética
2.
PLoS Genet ; 14(3): e1007292, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29565971

RESUMO

Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases-or recombination directionality factors-RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a "master controller" of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer.


Assuntos
Mesorhizobium/genética , Recombinação Genética , Sequência de Aminoácidos , Cromossomos Bacterianos , DNA Nucleotidiltransferases/metabolismo , Transferência Genética Horizontal , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Percepção de Quorum , RNA Bacteriano/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Virais/metabolismo
3.
Plasmid ; 104: 102416, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078551

RESUMO

Integrative and conjugative elements (ICEs) are chromosomally-integrated mobile genetic elements that excise from their host chromosome and transfer to other bacteria via conjugation. ICEMlSymR7A is the prototypical member of a large family of "symbiosis ICEs" which confer upon their hosts the ability to form a nitrogen-fixing symbiosis with a variety of legume species. Mesorhizobial symbiosis ICEs carry a common core of mobilisation genes required for integration, excision and conjugative transfer. IntS of ICEMlSymR7A enables recombination between the ICEMlSymR7A attachment site attP and the 3' end of the phe-tRNA gene. Here we identified putative IntS attP arm (P) sites within the attP region and demonstrated that the outermost P1 and P5 sites demarcated the minimal region for efficient IntS-mediated integration. We also identified the ICEMlSymR7A origin-of-transfer (oriT) site directly upstream of the relaxase-gene rlxS. The ICEMlSymR7A conjugation system mobilised a plasmid carrying the cloned oriT to Escherichia coli in an rlxS-dependent manner. Surprisingly, an in-frame, markerless deletion mutation in the ICEMlSymR7A recombination directionality factor (excisionase) gene rdfS, but not a mutation in intS, abolished mobilisation, suggesting the rdfS deletion tentatively has downstream effects on conjugation or its regulation. In summary, this work defines two critical cis-acting regions required for excision and transfer of ICEMlSymR7A and related ICEs.


Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Ilhas Genômicas , Integrases/metabolismo , Origem de Replicação , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , DNA Nucleotidiltransferases , Ordem dos Genes , Transferência Genética Horizontal , Motivos de Nucleotídeos , Ligação Proteica , Recombinação Genética , Simbiose , Proteínas Virais
4.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1210-1220, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189741

RESUMO

The recombination directionality factors from Mesorhizobium spp. (RdfS) are involved in regulating the excision and transfer of integrative and conjugative elements. Here, solution small-angle X-ray scattering, and crystallization and preliminary structure solution of RdfS from Mesorhizobium japonicum R7A are presented. RdfS crystallizes in space group P212121, with evidence of eightfold rotational crystallographic/noncrystallographic symmetry. Initial structure determination by molecular replacement using ab initio models yielded a partial model (three molecules), which was completed after manual inspection revealed unmodelled electron density. The finalized crystal structure of RdfS reveals a head-to-tail polymer forming left-handed superhelices with large solvent channels. Additionally, RdfS has significant disorder in the C-terminal region of the protein, which is supported by the solution scattering data and the crystal structure. The steps taken to finalize structure determination, as well as the scattering and crystallographic characteristics of RdfS, are discussed.


Assuntos
Polímeros , Recombinação Genética , Cristalografia , Cristalografia por Raios X , Solventes , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA