Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380765

RESUMO

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Magnetoencefalografia , Núcleo Subtalâmico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Magnetoencefalografia/métodos , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda/métodos , Tremor Essencial/fisiopatologia , Tremor Essencial/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tálamo/fisiologia , Tálamo/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Núcleos Ventrais do Tálamo/fisiologia , Núcleos Ventrais do Tálamo/fisiopatologia
2.
Mov Disord ; 38(9): 1736-1742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37358761

RESUMO

BACKGROUND: Deep brain stimulation (DBS) has been increasingly used in the management of dyskinetic cerebral palsy (DCP). Data on long-term effects and the safety profile are rare. OBJECTIVES: We assessed the efficacy and safety of pallidal DBS in pediatric patients with DCP. METHODS: The STIM-CP trial was a prospective, single-arm, multicenter study in which patients from the parental trial agreed to be followed-up for up to 36 months. Assessments included motor and non-motor domains. RESULTS: Of the 16 patients included initially, 14 (mean inclusion age 14 years) were assessed. There was a significant change in the (blinded) ratings of the total Dyskinesia Impairment Scale at 36 months. Twelve serious adverse events (possibly) related to treatment were documented. CONCLUSION: DBS significantly improved dyskinesia, but other outcome parameters did not change significantly. Investigations of larger homogeneous cohorts are needed to further ascertain the impact of DBS and guide treatment decisions in DCP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Paralisia Cerebral , Estimulação Encefálica Profunda , Discinesias , Transtornos dos Movimentos , Humanos , Criança , Adolescente , Paralisia Cerebral/terapia , Seguimentos , Estudos Prospectivos , Discinesias/etiologia , Discinesias/terapia , Globo Pálido , Transtornos dos Movimentos/terapia , Resultado do Tratamento
3.
Health Qual Life Outcomes ; 21(1): 77, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474950

RESUMO

BACKGROUND: Neurostimulation is a highly effective therapy for the treatment of chronic Intractable pain, however, due to the complexity of pain, measuring a subject's long-term response to the therapy remains difficult. Frequent measurement of patient-reported outcomes (PROs) to reflect multiple aspects of subjects' pain is a crucial step in determining therapy outcomes. However, collecting full-length PROs is burdensome for both patients and clinicians. The objective of this work is to identify the reduced set of questions from multiple validated PROs that can accurately characterize chronic pain patients' responses to neurostimulation therapies. METHODS: Validated PROs were used to capture pain, physical function and disability, as well as psychometric, satisfaction, and global health metrics. PROs were collected from 509 patients implanted with Spinal Cord Stimulation (SCS) or Dorsal Root Ganglia (DRG) neurostimulators enrolled in the prospective, international, post-market REALITY study (NCT03876054, Registration Date: March 15, 2019). A combination of linear regression, Pearson's correlation, and factor analysis were used to eliminate highly correlated questions and find the minimal meaningful set of questions within the predefined domains of each scale. RESULTS: The shortened versions of the questionnaires presented almost identical accuracy for classifying the therapy outcomes as compared to the validated full-length versions. In addition, principal component analysis was performed on all the PROs and showed a robust clustering of pain intensity, psychological factors, physical function, and sleep across multiple PROs. A selected set of questions captured from multiple PROs can provide adequate information for measuring neurostimulation therapy outcomes. CONCLUSIONS: PROs are important subjective measures to evaluate the physiological and psychological aspects of pain. However, these measures are cumbersome to collect. These shorter and more targeted PROs could result in better patient engagement, and enhanced and more frequent data collection processes for digital health platforms that minimize patient burden while increasing therapeutic benefits for chronic pain patients.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Humanos , Dor Crônica/terapia , Dor Crônica/psicologia , Gânglios Espinais/fisiologia , Manejo da Dor , Medidas de Resultados Relatados pelo Paciente , Estudos Prospectivos , Qualidade de Vida , Resultado do Tratamento , Estudos Clínicos como Assunto
4.
Neuroimage ; 263: 119619, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087901

RESUMO

Recent evidence suggests that beta bursts in subthalamic nucleus (STN) play an important role in Parkinsonian pathophysiology. We studied the spatio-temporal relationship between STN beta bursts and cortical activity in 26 Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery. Postoperatively, we simultaneously recorded STN local field potentials (LFP) from externalized DBS leads and cortical activity using whole-brain magnetoencephalography. Event-related magnetic fields (ERF) were averaged time-locked to STN beta bursts and subjected to source localization. Our results demonstrate that ERF exhibiting activity significantly different from baseline activity were localized within areas functionally related to associative, limbic, and motor systems as well as regions pertinent for visual and language processing. Our data suggest that STN beta bursts are involved in network formation between STN and cortex. This interaction is in line with the idea of parallel processing within the basal ganglia-cortex loop, specifically within the functional subsystems of the STN (i.e., associative, limbic, motor, and the related cortical areas). ERFs within visual and language-related cortical areas indicate involvement of beta bursts in STN-cortex networks beyond the associative, limbic, and motor loops. In sum, our results highlight the involvement of STN beta bursts in the formation of multiple STN - cortex loops in patients with PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Gânglios da Base , Magnetoencefalografia , Ritmo beta/fisiologia
5.
Mov Disord ; 37(4): 799-811, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34967053

RESUMO

BACKGROUND: Patients with dyskinetic cerebral palsy are often severely impaired with limited treatment options. The effects of deep brain stimulation (DBS) are less pronounced than those in inherited dystonia but can be associated with favorable quality of life outcomes even in patients without changes in dystonia severity. OBJECTIVE: The aim is to assess DBS effects in pediatric patients with pharmacorefractory dyskinetic cerebral palsy with focus on quality of life. METHODS: The method used is a prospective, single-arm, multicenter study. The primary endpoint is improvement in quality of life (CPCHILD [Caregiver Priorities & Child Health Index of Life with Disabilities]) from baseline to 12 months under therapeutic stimulation. The main key secondary outcomes are changes in Burke-Fahn-Marsden Dystonia Rating Scale, Dyskinesia Impairment Scale, Gross Motor Function Measure-66, Canadian Occupational Performance Measure (COPM), and Short-Form (SF)-36. After 12 months, patients were randomly assigned to a blinded crossover to receive active or sham stimulation for 24 hours each. Severity of dystonia and chorea were blindly rated. Safety was assessed throughout. The trial was registered at ClinicalTrials.gov, number NCT02097693. RESULTS: Sixteen patients (age: 13.4 ± 2.9 years) were recruited by seven clinical sites. Primary outcome at 12-month follow-up is as follows: mean CPCHILD increased by 4.2 ± 10.4 points (95% CI [confidence interval] -1.3 to 9.7; P = 0.125); among secondary outcomes: improvement in COPM performance measure of 1.1 ± 1.5 points (95% CI 0.2 to 1.9; P = 0.02) and in the SF-36 physical health component by 5.1 ± 6.2 points (95% CI 0.7 to 9.6; P = 0.028). Otherwise, there are no significant changes. CONCLUSION: Evidence to recommend DBS as routine treatment to improve quality of life in pediatric patients with dyskinetic cerebral palsy is not yet sufficient. Extended follow-up in larger cohorts will determine the impact of DBS further to guide treatment decisions in these often severely disabled patients. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Paralisia Cerebral , Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Adolescente , Canadá , Paralisia Cerebral/terapia , Criança , Estimulação Encefálica Profunda/métodos , Globo Pálido , Humanos , Estudos Prospectivos , Qualidade de Vida , Resultado do Tratamento
6.
Acta Neurochir (Wien) ; 164(4): 1175-1182, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212799

RESUMO

PURPOSE: Deep brain stimulation (DBS), an effective treatment for movement disorders, usually involves lead implantation while the patient is awake and sedated. Recently, there has been interest in performing the procedure under general anesthesia (asleep). This report of a consecutive cohort of DBS patients describes anesthesia protocols for both awake and asleep procedures. METHODS: Consecutive patients with Parkinson's disease received subthalamic nucleus (STN) implants either moderately sedated or while intubated, using propofol and remifentanil. Microelectrode recordings were performed with up to five trajectories after discontinuing sedation in the awake group, or reducing sedation in the asleep group. Clinical outcome was compared between groups with the UPDRS III. RESULTS: The awake group (n = 17) received 3.5 mg/kg/h propofol and 11.6 µg/kg/h remifentanil. During recording, all anesthesia was stopped. The asleep group (n = 63) initially received 6.9 mg/kg/h propofol and 31.3 µg/kg/h remifentanil. During recording, this was reduced to 3.1 mg/kg/h propofol and 10.8 µg/kg/h remifentanil. Without parkinsonian medications or stimulation, 3-month UPDRS III ratings (ns = 16 and 52) were 40.8 in the awake group and 41.4 in the asleep group. Without medications but with stimulation turned on, ratings improved to 26.5 in the awake group and 26.3 in the asleep group. With both medications and stimulation, ratings improved further to 17.6 in the awake group and 15.3 in the asleep group. All within-group improvements from the off/off condition were statistically significant (all ps < 0.01). The degree of improvement with stimulation, with or without medications, was not significantly different in the awake vs. asleep groups (ps > 0.05). CONCLUSION: The above anesthesia protocols make possible an asleep implant procedure that can incorporate sufficient microelectrode recording. Together, this may increase patient comfort and improve clinical outcomes.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Anestesia Geral , Estimulação Encefálica Profunda/métodos , Humanos , Microeletrodos , Núcleo Subtalâmico/cirurgia , Resultado do Tratamento , Vigília/fisiologia
7.
Neuromodulation ; 25(6): 888-894, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33779014

RESUMO

OBJECTIVES: One of the main challenges posed by the surgical deep brain stimulation (DBS) procedure is the successful targeting of the structures of interest and avoidance of side effects, especially in asleep surgery. Here, intraoperative motor evoked potentials (MEPs) might serve as tool to identify the pyramidal tract. We hypothesized that intraoperative MEPs are useful to define the distance to the pyramidal tract and reduce the occurrence of postoperative capsular side effects. MATERIALS AND METHODS: Motor potentials were evoked through both microelectrode and DBS-electrode stimulation during stereotactic DBS surgery on 25 subthalamic nuclei and 3 ventral intermediate thalamic nuclei. Internal capsule proximity was calculated for contacts on microelectrode trajectories, as well as for DBS-electrodes, and correlated with the corresponding MEP thresholds. Moreover, the predictivity of intraoperative MEP thresholds on the probability of postoperative capsular side effects was calculated. RESULTS: Intraoperative MEPs thresholds correlated significantly with internal capsule proximity, regardless of the stimulation source. Furthermore, MEPs thresholds were highly accurate to exclude the occurrence of postoperative capsular side effects. CONCLUSIONS: Intraoperative MEPs provide additional targeting guidance, especially in asleep DBS surgery, where clinical value of microelectrode recordings and test stimulation may be limited. As this technique can exclude future capsular side effects, it can directly be translated into clinical practice.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Estimulação Encefálica Profunda/métodos , Potencial Evocado Motor/fisiologia , Humanos , Microeletrodos , Tratos Piramidais , Núcleo Subtalâmico/fisiologia
8.
Neuromodulation ; 25(6): 817-828, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34047410

RESUMO

OBJECTIVE: Published reports on directional deep brain stimulation (DBS) have been limited to small, single-center investigations. Therapeutic window (TW) is used to describe the range of stimulation amplitudes achieving symptom relief without side effects. This crossover study performed a randomized double-blind assessment of TW for directional and omnidirectional DBS in a large cohort of patients implanted with a DBS system in the subthalamic nucleus for Parkinson's disease. MATERIALS AND METHODS: Participants received omnidirectional stimulation for the first three months after initial study programming, followed by directional DBS for the following three months. The primary endpoint was a double-blind, randomized evaluation of TW for directional vs omnidirectional stimulation at three months after initial study programming. Additional data recorded at three- and six-month follow-ups included stimulation preference, therapeutic current strength, Unified Parkinson's Disease Rating Scale (UPDRS) part III motor score, and quality of life. RESULTS: The study enrolled 234 subjects (62 ± 8 years, 33% female). TW was wider using directional stimulation in 183 of 202 subjects (90.6%). The mean increase in TW with directional stimulation was 41% (2.98 ± 1.38 mA, compared to 2.11 ± 1.33 mA for omnidirectional). UPDRS part III motor score on medication improved 42.4% at three months (after three months of omnidirectional stimulation) and 43.3% at six months (after three months of directional stimulation) with stimulation on, compared to stimulation off. After six months, 52.8% of subjects blinded to stimulation type (102/193) preferred the period with directional stimulation, and 25.9% (50/193) preferred the omnidirectional period. The directional period was preferred by 58.5% of clinicians (113/193) vs 21.2% (41/193) who preferred the omnidirectional period. CONCLUSION: Directional stimulation yielded a wider TW compared to omnidirectional stimulation and was preferred by blinded subjects and clinicians.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Estudos Cross-Over , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento
9.
Neuromodulation ; 24(8): 1429-1438, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32896965

RESUMO

INTRODUCTION: Sphenopalatine ganglion (SPG) stimulation is an efficient treatment for cluster headache. The target for the SPG microstimulator in the pterygopalatine fossa lies between the vidian canal and foramen rotundum, ideally two contacts should be placed in this area. However, placement according to the manufacturers recommendations is frequently not possible. It is not known whether a suboptimal electrode placement interferes with postoperative outcomes. MATERIALS AND METHODS: SPG stimulation was performed in 13 patients between 2015 and 2018 in a single center. Lead location was determined by intraoperative computed tomography scan and correlated with the planned lead position as well as clinical data and stimulation parameters. Patients with a reduction of 50% or more in pain intensity or frequency were considered responsive. RESULTS: Eleven patients (84.6%) responded to SPG stimulation with eight being frequency responders (61.5%). In seven cases, there were less than two electrodes between vidian canal and foramen rotundum, there was no significant correlation with negative stimulation results (p = 0.91). The mean distance of lead location between pre- and postoperative images did not correlate with clinical outcomes (p = 0.84) and was even bigger in responders (4.91 mm vs. 4.53 mm). The closest electrode contact to the vidian canal was in the stimulation area in all but one patient, regardless of its overall distance to canal. The distance of the closest electrode to the vidian canal was, however, not significantly correlated to the percentage of frequency (p = 0.68) or intensity reduction (p = 0.61). CONCLUSION: There was no significant correlation regarding aberrations of lead position from the planned position with clinical outcome. However, this study might be underpowered to detect such a correlation. The closest electrode contact to the vidian canal was in the stimulation area in all but one patient in the final programming. This indicates that, overall, the lead location does play a crucial role in SPG stimulation for cluster headache.


Assuntos
Cefaleia Histamínica , Terapia por Estimulação Elétrica , Gânglios Parassimpáticos , Cefaleia Histamínica/terapia , Eletrodos Implantados , Humanos , Resultado do Tratamento
10.
Neuromodulation ; 24(2): 279-285, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32662156

RESUMO

OBJECTIVE: The effect of anesthesia type in terms of asleep vs. awake deep brain stimulation (DBS) surgery on therapeutic window (TW) has not been investigated so far. The objective of the study was to investigate whether asleep DBS surgery of the subthalamic nucleus (STN) improves TW for both directional (dDBS) and omnidirectional (oDBS) stimulation in a large single-center population. MATERIALS AND METHODS: A total of 104 consecutive patients with Parkinson's disease (PD) undergoing STN-DBS surgery (80 asleep and 24 awake) were compared regarding TW, therapeutic threshold, side effect threshold, improvement of Unified PD Rating Scale motor score (UPDRS-III) and degree of levodopa equivalent daily dose (LEDD) reduction. RESULTS: Asleep DBS surgery led to significantly wider TW compared to awake surgery for both dDBS and oDBS. However, dDBS further increased TW compared to oDBS in the asleep group only and not in the awake group. Clinical efficacy in terms of UPDRS-III improvement and LEDD reduction did not differ between groups. CONCLUSIONS: Our study provides first evidence for improvement of therapeutic window by asleep surgery compared to awake surgery, which can be strengthened further by dDBS. These results support the notion of preferring asleep over awake surgery but needs to be confirmed by prospective trials.


Assuntos
Neoplasias Encefálicas , Estimulação Encefálica Profunda , Núcleo Subtalâmico , Humanos , Estudos Prospectivos , Resultado do Tratamento , Vigília
11.
Neuromodulation ; 24(2): 343-352, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32666569

RESUMO

OBJECTIVES: Deep brain stimulation (DBS) of the posterior subthalamic area (PSA) and the ventral intermediate thalamic nucleus (VIM) is a well-established therapy for essential tremor (ET), but it is frequently associated with side effects like dysarthria or gait ataxia. Directional DBS (dDBS) may be a way to activate fiber tracts more selectively. Is dDBS for ET superior to omnidirectional DBS (oDBS) regarding therapeutic window and clinically as effective as oDBS? MATERIALS AND METHODS: Ten patients with ET treated with PSA/VIM-DBS were recruited. Therapeutic window served as primary outcome parameter; clinical efficacy, volume of neuronal activation, and total electrical energy delivered (TEED) served as secondary outcome parameters. Therapeutic window was calculated for all three dDBS directions and for oDBS by determining therapeutic thresholds and side effect thresholds. Clinical efficacy was assessed by comparing the effect of best dDBS and oDBS on tremor and ataxia rating scales, and accelerometry. Volume of neural activation and TEED were also calculated for both paradigms. RESULTS: For best dDBS, therapeutic window was wider and therapeutic threshold was lower compared to oDBS. While side effect threshold did not differ, volume of neural activation was larger for dDBS. In terms of clinical efficacy, dDBS was as effective as oDBS. CONCLUSIONS: dDBS for ET widens therapeutic window due to reduction of therapeutic threshold. Larger volume of neural activation for dDBS at side effect threshold supports the notion of persistent directionality even at higher intensities. dDBS may compensate for slightly misplaced leads and should be considered first line for PSA/VIM-DBS.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Tremor Essencial/terapia , Humanos , Neurônios , Tálamo , Resultado do Tratamento , Núcleos Ventrais do Tálamo
12.
Pain Med ; 21(7): 1415-1420, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034418

RESUMO

OBJECTIVE: To conduct a systematic literature review of brain neurostimulation for pain. DESIGN: Grade the evidence for deep brain neurostimulation (DBS). METHODS: An international, interdisciplinary work group conducted a literature search for brain stimulation. Abstracts were reviewed to select studies for grading. Randomized controlled trials (RCTs) meeting inclusion/exclusion criteria were graded by two independent reviewers. General inclusion criteria were prospective trials (RCTs and observational) that were not part of a larger or previously reported group. Excluded studies were retrospective or existed only as abstracts. Studies were graded using the modified Interventional Pain Management Techniques-Quality Appraisal of Reliability and Risk of Bias Assessment, the Cochrane Collaborations Risk of Bias assessment, and the United States Preventative Services Task Force level-of-evidence criteria. RESULTS: Two high-quality RCTs and three observational trials supported DBS, resulting in Level II (moderate) evidence. CONCLUSION: Moderate evidence supports DBS to treat chronic pain. Additional Level I RCTs are needed to further the strength of the evidence in this important area of medicine, but the current evidence suggests that DBS should be considered as an option in treating complex pain cases.


Assuntos
Dor Crônica , Encéfalo , Dor Crônica/terapia , Humanos , Manejo da Dor
13.
Neuromodulation ; 23(2): 213-221, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31730273

RESUMO

INTRODUCTION: Since it became available in the mid-2010s, dorsal root ganglion (DRG) stimulation has become part of the armamentarium to treat chronic pain. To date, one randomized controlled trial, and several studies of moderate sample size and various etiologies have been published on this topic. We conducted a pooled analysis to investigate the generalizability of individual studies and to identify differences in outcome between chronic pain etiologic subgroups and/or pain location. MATERIALS AND METHODS: One prospective, randomized comparative trial and six prospective, single-arm, observational studies were identified that met pre-defined acceptance criteria. Pain scores and patient-reported outcome (PRO) measures were weighted by study sample sizes and pooled. Safety data are reported in aggregate form. RESULTS: Our analysis included 217 patients with a permanent implant at 12-month follow-up. Analysis of pooled data showed an overall weighted mean pain score of 3.4, with 63% of patients reporting ≥50% pain relief. Effectiveness sub-analyses in CRPS-I, causalgia, and back pain resulted in a mean reduction in pain intensity of 4.9, 4.6, and 3.9 points, respectively. Our pooled analysis showed a pain score for primary affected region ranging from 1.7 (groin) to 3.0 (buttocks) and responder rates of 80% for foot and groin, 75% for leg, and 70% for back. A substantial improvement in all PROs was observed at 12 months. The most commonly reported procedural or device complications were pain at the IPG pocket site, lead fracture, lead migration, and infection. CONCLUSIONS: DRG stimulation is an effective and safe therapy for various etiologies of chronic pain.


Assuntos
Dor Crônica/terapia , Gânglios Espinais/fisiologia , Manejo da Dor/métodos , Estimulação da Medula Espinal/métodos , Dor Crônica/fisiopatologia , Humanos , Estudos Observacionais como Assunto/métodos , Manejo da Dor/efeitos adversos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Estimulação da Medula Espinal/efeitos adversos , Resultado do Tratamento
14.
Neuromodulation ; 22(8): 951-955, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30620789

RESUMO

INTRODUCTION: Dorsal root ganglion stimulation is a meanwhile established but rather new technique of neuromodulation to treat chronic pain states of different origin. While being primarily used in the lumbar region, dorsal root ganglion (DRG) stimulation also can be used in the upper thoracic and cervical region with slight alterations of the surgical approach. This offers new therapeutic options especially in the treatment of neuropathic pain states of the upper extremities. Data on surgical technique, outcome and complications rates of DRG in this region are limited. MATERIALS AND METHODS: We report a consecutive series of 20 patients treated with DRG stimulation in the upper thoracic and cervical region. All patients suffered from chronic neuropathic pain unresponsive to best medical treatment. Main pain etiologies were trauma, spine surgery, postherpetic neuralgia, and peripheral nerve surgery. All patients were trialed with externalized electrodes prior to permanent pulse generator implantation. Routine clinical follow-up was performed during reprogramming sessions. RESULTS: Out of all 20 patients trialed, 18 were successfully trialed and implanted with a permanent stimulation system. The average pain relief after three months compared to the baseline was of 60.9% (mean VAS 8.5 to VAS 3.2). 77.8% of the patients reported a pain relief of at least 50% after three months. One patient developed a transient paresis of the arm caused by the procedure. She completely recovered within three months. CONCLUSION: Cervical and upper thoracic DRG stimulation resulted in good overall response rates to trialing and similar pain relief when compared to DRG stimulation for groin and lower limb pain. A modified surgical approach has to be used when compared with lumbar DRG electrode placement. Surgery itself in this region is more complication prone and challenging.


Assuntos
Vértebras Cervicais , Dor Crônica/terapia , Gânglios Espinais , Neuralgia/terapia , Estimulação da Medula Espinal/métodos , Vértebras Torácicas , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Manejo da Dor/métodos , Estimulação da Medula Espinal/efeitos adversos , Resultado do Tratamento
15.
Neuromodulation ; 22(8): 956-959, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30549388

RESUMO

INTRODUCTION: Dorsal root ganglion stimulation (DRG) is a new but well-established neuromodulation technique allowing new indications and superiority to pre-existing stimulation techniques such as spinal cord stimulation in selected pain etiologies. Previous surgical procedures in the implantation area pose a challenge for the percutaneous technique and are therefore considered contraindications for DRG stimulation surgery. We describe the successful open DRG electrode placement in two patients with previous surgeries suffering from severe radiculopathy due to foraminal stenosis. METHODS: Percutaneous implantation attempts failed and an open laminotomy/foraminotomy followed by open lead placement was performed. Leads and loops were placed under the microscope, lead location was verified by x-ray during surgery. Leads and loops were kept in position with fibrin glue and fibrin sealant patches. No special tool was required for open lead placement. RESULTS: In both patients, surgery resulted in lead and loop placement resembling the results seen in percutaneous technique. Programming and stimulation results are similar to observations made following percutaneous techniques in one patient significantly lower stimulation amplitudes were necessary. In 18 and 12 months follow-up, respectively, lead location and paresthesia coverage were stable. CONCLUSION: The option of open electrode placement should be taken into account following unsuccessful percutaneous lead placement. A combination of fibrin sealant patch and fibrin glue may be a good option for stabilization of the lead and specially of the strain relief loops in open placement. Knowledge of basic spinal surgery techniques and experience in percutaneous DRG stimulation is necessary to perform this procedure.


Assuntos
Eletrodos Implantados , Gânglios Espinais , Microcirurgia/métodos , Procedimentos Neurocirúrgicos/métodos , Feminino , Foraminotomia , Gânglios Espinais/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Radiculopatia/etiologia , Radiculopatia/terapia , Estimulação da Medula Espinal/métodos , Estenose Espinal/complicações , Tomografia Computadorizada por Raios X , Estimulação Elétrica Nervosa Transcutânea , Resultado do Tratamento
16.
Neuromodulation ; 22(2): 190-193, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30456795

RESUMO

INTRODUCTION: The burst waveform, a recent innovation in spinal cord stimulation (SCS), can achieve better outcomes than conventional tonic SCS, both for de novo implants and as a salvage therapy. Burst stimulation delivers more energy per second than tonic stimulation, which is a consideration for battery consumption. The clinical effectiveness of an energy-conserving strategy was investigated. METHODS: Subjects were experienced users of BurstDR SCS for back and leg pain. Three 2-week stimulation paradigms were presented in blinded random order: standard (continuously delivered) BurstDR, microdosing A: 5 sec of BurstDR alternating with 5 sec of no stimulation, and microdosing B: 5 sec of BurstDR alternating with 10 sec of no stimulation. The primary outcome for each paradigm was change in pain ratings, and secondary outcomes included changes in scores for quality of life, satisfaction, and preference. RESULTS: Twenty-five subjects assessed all three stimulation paradigms. There were no significant differences in pain (visual analog scale) or quality of life (EQ-5D) when comparing standard burst outcomes with those of microdosing A and, separately, microdosing B. Microdosing paradigms were graded with slightly higher level of satisfaction and were generally preferred above standard burst stimulation. DISCUSSION: These results suggest that the use of energy-efficient burst microdosing stimulation paradigms with alternating stimulation-on and stimulation-off periods can provide clinically equivalent results to standard burst stimulation. This is important for extending SCS battery life. Further research is needed to comprehensively characterize the clinical utility of this approach and the neurophysiological mechanisms for the maintenance of pain relief during stimulation-off periods.


Assuntos
Dor nas Costas/terapia , Dor Crônica/terapia , Estimulação da Medula Espinal/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Estudos Prospectivos , Método Simples-Cego , Resultado do Tratamento
17.
Neuroimage ; 174: 201-207, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29551459

RESUMO

Deep brain stimulation (DBS) is an established therapy to treat motor symptoms in movement disorders such as Parkinson's disease (PD). The mechanisms leading to the high therapeutic effectiveness of DBS are poorly understood so far, but modulation of oscillatory activity is likely to play an important role. Thus, investigating the effect of DBS on cortical oscillatory activity can help clarifying the neurophysiological mechanisms of DBS. Here, we aimed at scrutinizing changes of cortical oscillatory activity by DBS at different frequencies using magnetoencephalography (MEG). MEG data from 17 PD patients were acquired during DBS of the subthalamic nucleus (STN) the day after electrode implantation and before implanting the pulse generator. We stimulated the STN unilaterally at two different stimulation frequencies, 130 Hz and 340 Hz using an external stimulator. Data from six patients had to be discarded due to strong artefacts and two other datasets were excluded since these patients were not able to finalize the paradigm. After DBS artefact removal, power spectral density (PSD) values of MEG were calculated for each individual patient and averaged over the group. DBS at both 130 Hz and 340 Hz led to a widespread suppression of cortical alpha/beta band activity (8-22 Hz) specifically over bilateral sensorimotor cortices. No significant differences were observed between the two stimulation frequencies. Our finding of a widespread suppression of cortical alpha/beta band activity is particularly interesting as PD is associated with pathologically increased levels of beta band activity in the basal ganglia-thalamo-cortical circuit. Therefore, suppression of such oscillatory activity might be an essential effect of DBS for relieving motor symptoms in PD and can be achieved at different stimulation frequencies above 100 Hz.


Assuntos
Ritmo alfa , Ritmo beta , Estimulação Encefálica Profunda , Córtex Sensório-Motor/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade
18.
Ann Neurol ; 82(4): 592-601, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892573

RESUMO

OBJECTIVE: Freezing of gait is a poorly understood symptom of Parkinson disease, and can severely disrupt the locomotion of affected patients. However, bicycling ability remains surprisingly unaffected in most patients suffering from freezing, suggesting functional differences in the motor network. The purpose of this study was to characterize and contrast the oscillatory dynamics underlying bicycling and walking in the basal ganglia. METHODS: We present the first local field potential recordings directly comparing bicycling and walking in Parkinson disease patients with electrodes implanted in the subthalamic nuclei for deep brain stimulation. Low (13-22Hz) and high (23-35Hz) beta power changes were analyzed in 22 subthalamic nuclei from 13 Parkinson disease patients (57.5 ± 5.9 years old, 4 female). The study group consisted of 5 patients with and 8 patients without freezing of gait. RESULTS: In patients without freezing of gait, both bicycling and walking led to a suppression of subthalamic beta power (13-35Hz), and this suppression was stronger for bicycling. Freezers showed a similar pattern in general. Superimposed on this pattern, however, we observed a movement-induced, narrowband power increase around 18Hz, which was evident even in the absence of freezing. INTERPRETATION: These results indicate that bicycling facilitates overall suppression of beta power. Furthermore, movement leads to exaggerated synchronization in the low beta band specifically within the basal ganglia of patients susceptible to freezing. Abnormal ∼18Hz oscillations are implicated in the pathophysiology of freezing of gait, and suppressing them may form a key strategy in developing potential therapies. Ann Neurol 2017;82:592-601.


Assuntos
Gânglios da Base/fisiopatologia , Ritmo beta/fisiologia , Ciclismo/fisiologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Estimulação Acústica , Estimulação Encefálica Profunda/métodos , Avaliação da Deficiência , Eletroencefalografia , Potenciais Evocados Auditivos , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Transtornos Parkinsonianos/terapia , Análise Espectral , Caminhada
19.
Neuromodulation ; 21(6): 541-547, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29532560

RESUMO

BACKGROUND: Deep brain stimulation (DBS) surgery for Parkinson's disease (PD) is usually performed as awake surgery allowing sufficient intraoperative testing. Recently, outcomes after asleep surgery have been assumed comparable. However, direct comparisons between awake and asleep surgery are scarce. OBJECTIVE: To investigate the difference between awake and asleep surgery comparing motor and nonmotor outcome after subthalamic nucleus (STN)-DBS in a large single center PD population. METHODS: Ninety-six patients were retrospectively matched pairwise (48 asleep and 48 awake) and compared regarding improvement of Unified PD Rating Scale Motor Score (UPDRS-III), cognitive function, Levodopa-equivalent-daily-dose (LEDD), stimulation amplitudes, side effects, surgery duration, and complication rates. Routine testing took place at three months and one year postoperatively. RESULTS: Chronic DBS effects (UPDRS-III without medication and with stimulation on [OFF/ON]) significantly improved UPDRS-III only after awake surgery at three months and in both groups one year postoperatively. Acute effects (percentage UPDRS-III reduction after activation of stimulation) were also significantly better after awake surgery at three months but not at one year compared to asleep surgery. UPDRS-III subitems "freezing" and "speech" were significantly worse after asleep surgery at three months and one year, respectively. LEDD was significantly lower after awake surgery only one week postoperatively. The other measures did not differ between groups. CONCLUSIONS: Overall motor function improved faster in the awake surgery group, but the difference ceased after one year. However, axial subitems were worse in the asleep surgery group suggesting that worsening of axial symptoms was risked improving overall motor function. Awake surgery still seems advantageous for STN-DBS in PD, although asleep surgery may be considered with lower threshold in patients not suitable for awake surgery.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Vigília/fisiologia , Idoso , Antiparkinsonianos/uso terapêutico , Cognição/fisiologia , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Resultado do Tratamento
20.
Neuromodulation ; 21(6): 582-587, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29164724

RESUMO

BACKGROUND: Target localization for deep brain stimulation (DBS) is a challenging step that determines not only the correct placement of stimulation electrodes, but also influences the success of the DBS procedure as reflected in the desired clinical outcome of a patient. OBJECTIVE: We report on the feasibility of DBS target localization in the subthalamic nucleus (STN) by long-latency somatosensory evoked potentials (LL-SSEPs) (>40 msec) in Parkinson's disease (PD) patients. METHODS: Micro-macroelectrode recordings were performed intraoperatively on seven PD patients (eight STN hemispheres) who underwent DBS treatment. LL-SSEPs were elicited by ipsi- and contralateral median nerve stimulation to the wrist. RESULTS: Four distinctive LL-SSEP components were elicited ("LL-complex" consisting of P80, N100, P140, and N200). The P80 appeared as the most visible and reliable intraoperative component. Localization of the "LL-complex" within the target was approved with typical microelectrode firing activity patterns, atlas visualization of recording electrodes, and postoperative CT-based visualization of final DBS electrodes. CONCLUSIONS: LL-SSEPs represent a promising approach for DBS target localization in the STN, provided deeper understanding on their anesthesia effect is obtained. This approach is advantageous in that it does not require the patient's participation in an intraoperative setting.


Assuntos
Estimulação Encefálica Profunda/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Neurofisiológica Intraoperatória/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA