Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Genet ; 17(7): e1009654, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242211

RESUMO

It is a conventionally held dogma that the genetic basis underlying development is conserved in a long evolutionary time scale. Ample experiments based on mutational, biochemical, functional, and complementary knockdown/knockout approaches have revealed the unexpectedly important role of recently evolved new genes in the development of Drosophila. The recent progress in the genome-wide experimental testing of gene effects and improvements in the computational identification of new genes (< 40 million years ago, Mya) open the door to investigate the evolution of gene essentiality with a phylogenetically high resolution. These advancements also raised interesting issues in techniques and concepts related to phenotypic effect analyses of genes, particularly of those that recently originated. Here we reported our analyses of these issues, including reproducibility and efficiency of knockdown experiment and difference between RNAi libraries in the knockdown efficiency and testing of phenotypic effects. We further analyzed a large data from knockdowns of 11,354 genes (~75% of the Drosophila melanogaster total genes), including 702 new genes (~66% of the species total new genes that aged < 40 Mya), revealing a similarly high proportion (~32.2%) of essential genes that originated in various Sophophora subgenus lineages and distant ancestors beyond the Drosophila genus. The transcriptional compensation effect from CRISPR knockout were detected for highly similar duplicate copies. Knockout of a few young genes detected analogous essentiality in various functions in development. Taken together, our experimental and computational analyses provide valuable data for detection of phenotypic effects of genes in general and further strong evidence for the concept that new genes in Drosophila quickly evolved essential functions in viability during development.


Assuntos
Evolução Molecular , Duplicação Gênica/genética , Genes Essenciais/genética , Animais , Evolução Biológica , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes/métodos , Genômica , Genótipo , Modelos Genéticos , Mutação , Fenótipo , Filogenia , Reprodutibilidade dos Testes
2.
Genome Res ; 29(7): 1115-1122, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31221725

RESUMO

New genes are a major source of novelties, and a disproportionate amount of them are known to show testis expression in later phases of male gametogenesis in different groups such as mammals and plants. Here, we propose that this enhanced expression is a consequence of haploid selection during the latter stages of male gametogenesis. Because emerging adaptive mutations will be fixed faster if their phenotypes are expressed by haploid rather than diploid genotypes, new genes with advantageous functions arising during this unique stage of development have a better chance to become fixed. To test this hypothesis, expression levels of genes of differing evolutionary age were examined at various stages of Drosophila spermatogenesis. We found, consistent with a model based on haploid selection, that new Drosophila genes are both expressed in later haploid phases of spermatogenesis and harbor a significant enrichment of adaptive mutations. Additionally, the observed overexpression of new genes in the latter phases of spermatogenesis was limited to the autosomes. Because all male cells exhibit hemizygous expression for X-linked genes (and therefore effectively haploid), there is no expectation that selection acting on late spermatogenesis will have a different effect on X-linked genes in comparison to initial diploid phases. Together, our proposed hypothesis and the analyzed data suggest that natural selection in haploid cells elucidates several aspects of the origin of new genes by explaining the general prevalence of their testis expression, and a parsimonious solution for new alleles to avoid being lost by genetic drift or pseudogenization.


Assuntos
Evolução Molecular , Haploidia , Seleção Genética , Espermatogênese/genética , Animais , Drosophila , Mutação em Linhagem Germinativa , Masculino , Modelos Genéticos , Testículo/metabolismo , Cromossomo X
3.
Annu Rev Genet ; 47: 307-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050177

RESUMO

Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.


Assuntos
Evolução Molecular , Genes , Animais , Encéfalo/embriologia , Drosophila melanogaster/genética , Previsões , Dosagem de Genes , Duplicação Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transferência Genética Horizontal , Genes de Insetos , Genes de Plantas , Estruturas Genéticas , Humanos , Mamíferos/genética , Modelos Genéticos , Fenótipo , Filogenia , RNA não Traduzido/fisiologia , Recombinação Genética , Seleção Genética , Caracteres Sexuais , Transcrição Gênica
4.
Genome Res ; 24(4): 629-38, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24407956

RESUMO

Recent studies have revealed key roles of noncoding RNAs in sex-related pathways, but little is known about the evolutionary forces acting on these noncoding RNAs. Profiling the transcriptome of Drosophila melanogaster with whole-genome tiling arrays found that 15% of male-biased transcribed fragments are intergenic noncoding RNAs (incRNAs), suggesting a potentially important role for incRNAs in sex-related biological processes. Statistical analysis revealed a paucity of male-biased incRNAs and coding genes on the X chromosome, suggesting that similar evolutionary forces could be affecting the genomic organization of both coding and noncoding genes. Expression profiling across germline and somatic tissues further suggested that both male meiotic sex chromosome inactivation (MSCI) and sexual antagonism could contribute to the chromosomal distribution of male-biased incRNAs. Comparative sequence analysis showed that the evolutionary age of male-biased incRNAs is a significant predictor of their chromosomal locations. In addition to identifying abundant sex-biased incRNAs in the fly genome, our work unveils a global picture of the complex interplay between noncoding RNAs and sexual chromosome evolution.


Assuntos
Drosophila melanogaster/genética , Genes Ligados ao Cromossomo X/genética , RNA não Traduzido/genética , Caracteres Sexuais , Animais , DNA Intergênico/genética , Feminino , Genoma de Inseto , Masculino , Meiose/genética , Cromossomo X/genética , Inativação do Cromossomo X/genética
5.
EMBO J ; 31(12): 2798-809, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22543869

RESUMO

New genes originate frequently across diverse taxa. Given that genetic networks are typically comprised of robust, co-evolved interactions, the emergence of new genes raises an intriguing question: how do new genes interact with pre-existing genes? Here, we show that a recently originated gene rapidly evolved new gene networks and impacted sex-biased gene expression in Drosophila. This 4-6 million-year-old factor, named Zeus for its role in male fecundity, originated through retroposition of a highly conserved housekeeping gene, Caf40. Zeus acquired male reproductive organ expression patterns and phenotypes. Comparative expression profiling of mutants and closely related species revealed that Zeus has recruited a new set of downstream genes, and shaped the evolution of gene expression in germline. Comparative ChIP-chip revealed that the genomic binding profile of Zeus diverged rapidly from Caf40. These data demonstrate, for the first time, how a new gene quickly evolved novel networks governing essential biological processes at the genomic level.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Drosophila/fisiologia , Evolução Molecular , Fertilidade , Perfilação da Expressão Gênica
6.
PLoS Biol ; 9(10): e1001179, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028629

RESUMO

How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.


Assuntos
Evolução Biológica , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Genoma Humano , Animais , Humanos , Camundongos , Seleção Genética , Sintenia , Transcriptoma , Regulação para Cima
7.
Genome Res ; 20(11): 1526-33, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20798392

RESUMO

We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales.


Assuntos
Envelhecimento/genética , Mapeamento Cromossômico , Drosophila/genética , Genes de Insetos , Genes Ligados ao Cromossomo X/genética , Fatores Etários , Animais , Mapeamento Cromossômico/métodos , Evolução Molecular , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , MicroRNAs/genética , Análise em Microsséries , Filogenia , Caracteres Sexuais , Cromossomo X/genética
8.
PLoS Biol ; 8(10)2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20957185

RESUMO

Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.


Assuntos
Evolução Biológica , Mamíferos/genética , Cromossomo X/genética , Animais , Feminino , Perfilação da Expressão Gênica , Genes Ligados ao Cromossomo X , Humanos , Masculino , Camundongos , MicroRNAs/genética , Filogenia , Espermatogênese/genética
9.
BMC Biol ; 10: 49; author reply 50, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22691264

RESUMO

BACKGROUND: Meiotic sex chromosome inactivation (MSCI) during spermatogenesis has been proposed as one of the evolutionary driving forces behind both the under-representation of male-biased genes on, and the gene movement out of, the X chromosome in Drosophila. However, the relevance of MSCI in shaping sex chromosome evolution is controversial. Here we examine two aspects of a recent study on testis gene expression (Mikhaylova and Nurminsky, BMC Biol 2011, 9:29) that failed to support the MSCI in Drosophila. First, Mikhaylova and Nurminsky found no differences between X-linked and autosomal genes based on the transcriptional profiling of the early testis development, and thus concluded that MSCI does not occur in D. melanogaster. Second, they also analyzed expression data from several D. melanogaster tissues and concluded that under-representation on the X chromosome is not an exclusive property of testis-biased genes, but instead, a general property of tissue-specific genes. RESULTS: By re-analyzing the Mikhaylova and Nurminsky's testis data and the expression data on several D. melanogaster tissues, we made two major findings that refuted their original claims. First, the developmental testis data has generally greater experimental error than conventional analyses, which reduced significantly the power to detect chromosomal differences in expression. Nevertheless, our re-analysis observed significantly lower expression of the X chromosome in the genomic transcriptomes of later development stages of the testis, which is consistent with the MSCI hypothesis. Second, tissue-specific genes are also in general enriched with genes more expressed in testes than in ovaries, that is testis-biased genes. By completely excluding from the analyses the testis-biased genes, which are known to be under-represented in the X, we found that all the other tissue-specific genes are randomly distributed between the X chromosome and the autosomes. CONCLUSIONS: Our findings negate the original study of Mikhaylova and Nurminsky, which concluded a lack of MSCI and generalized the pattern of paucity in the X chromosome for tissue-specific genes in Drosophila. Therefore, MSCI and other selection-based models such as sexual antagonism, dosage compensation, and meiotic-drive continue to be viable models as driving forces shaping the genomic distribution of male-related genes in Drosophila.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Inativação do Cromossomo X , Cromossomo X , Animais , Masculino
10.
Mob DNA ; 14(1): 12, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684690

RESUMO

BACKGROUND: Reverse-transcribed gene copies (retrocopies) have emerged as major sources of evolutionary novelty. MicroRNAs (miRNAs) are small and highly conserved RNA molecules that serve as key post-transcriptional regulators of gene expression. The origin and subsequent evolution of miRNAs have been addressed but not fully elucidated. RESULTS: In this study, we performed a comprehensive investigation of miRNA origination through retroduplicated mRNA sequences (retro-miRs). We identified 17 retro-miRs that emerged from the mRNA retrocopies. Four of these retro-miRs had de novo origins within retrocopied sequences, while 13 retro-miRNAs were located within exon regions and duplicated along with their host mRNAs. We found that retro-miRs were primate-specific, including five retro-miRs conserved among all primates and two human-specific retro-miRs. All retro-miRs were expressed, with predicted and experimentally validated target genes except miR-10527. Notably, the target genes of retro-miRs are involved in key biological processes such as metabolic processes, cell signaling, and regulation of neurotransmitters in the central nervous system. Additionally, we found that these retro-miRs play a potential oncogenic role in cancer by targeting key cancer genes and are overexpressed in several cancer types, including liver hepatocellular carcinoma and stomach adenocarcinoma. CONCLUSIONS: Our findings demonstrated that mRNA retrotransposition is a key mechanism for the generation of novel miRNAs (retro-miRs) in primates. These retro-miRs are expressed, conserved, have target genes with important cellular functions, and play important roles in cancer.

11.
BMC Evol Biol ; 12: 169, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22950647

RESUMO

BACKGROUND: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlötterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. RESULTS: We reanalyzed the dataset published by Metta and Schlötterer and found several issues that led us to a different conclusion. In particular, Metta and Schlötterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schlötterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlötterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. CONCLUSIONS: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.


Assuntos
Cromossomos de Insetos/genética , Drosophila/genética , Duplicação Gênica , Genes de Insetos/genética , Animais , Drosophila/classificação , Feminino , Expressão Gênica , Genes Ligados ao Cromossomo X/genética , Masculino , Mutagênese Insercional , Ovário/metabolismo , Retroelementos/genética , Transcrição Reversa , Seleção Genética , Fatores Sexuais , Testículo/metabolismo , Cromossomo X/genética
12.
J Mol Evol ; 74(3-4): 113-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22535494

RESUMO

Previous studies on organisms with well-differentiated X and Y chromosomes, such as Drosophila and mammals, consistently detected an excess of genes moving out of the X chromosome and gaining testis-biased expression. Several selective evolutionary mechanisms were shown to be associated with this nonrandom gene traffic, which contributed to the evolution of the X chromosome and autosomes. If selection drives gene traffic, such traffic should also exist in species with Z and W chromosomes, where the females are the heterogametic sex. However, no previous studies on gene traffic in species with female heterogamety have found any nonrandom chromosomal gene movement. Here, we report an excess of retrogenes moving out of the Z chromosome in an organism with the ZW sex determination system, Bombyx mori. In addition, we showed that those "out of Z" retrogenes tended to have ovary-biased expression, which is consistent with the pattern of non-retrogene traffic recently reported in birds and symmetrical to the retrogene movement in mammals and fruit flies out of the X chromosome evolving testis functions. These properties of gene traffic in the ZW system suggest a general role for the heterogamety of sex chromosomes in determining the chromosomal locations and the evolution of sex-biased genes.


Assuntos
Bombyx/genética , Evolução Molecular , Genes de Insetos , Retroelementos , Cromossomos Sexuais , Animais , Distribuição de Qui-Quadrado , Feminino , Fenômenos Genéticos , Masculino , Modelos Genéticos , Método de Monte Carlo , Ovário/metabolismo , Filogenia , Testículo/metabolismo
13.
Bioinformatics ; 27(13): 1749-53, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21551137

RESUMO

MOTIVATION: Retrocopies are important genes in the genomes of almost all higher eukaryotes. However, the annotation of such genes is a non-trivial task. Intronless genes have often been considered to be retroposed copies of intron-containing paralogs. Such categorization relies on the implicit premise that alignable regions of the duplicates should be long enough to cover exon-exon junctions of the intron-containing genes, and thus intron loss events can be inferred. Here, we examined the alternative possibility that intronless genes could be generated by partial DNA-based duplication of intron-containing genes in the fruitfly genome. RESULTS: By building pairwise protein-, transcript- and genome-level DNA alignments between intronless genes and their corresponding intron-containing paralogs, we found that alignments do not cover exon-exon junctions in 40% of cases and thus no intron loss could be inferred. For these cases, the candidate parental proteins tend to be partially duplicated, and intergenic sequences or neighboring genes are included in the intronless paralog. Moreover, we observed that it is significantly less likely for these paralogs to show inter-chromosomal duplication and testis-dominant transcription, compared to the remaining 60% of cases with evidence of clear intron loss (retrogenes). These lines of analysis reveal that DNA-based duplication contributes significantly to the 40% of cases of single exon gene duplication. Finally, we performed an analogous survey in the human genome and the result is similar, wherein 34% of the cases do not cover exon-exon junctions. Thus, genome annotation for retrogene identification should discard candidates without clear evidence of intron loss. CONTACT: mlong@uchicago.edu; zhangy@uchicago.edu


Assuntos
Drosophila melanogaster/genética , Evolução Molecular , Duplicação Gênica , Animais , Éxons , Humanos , Íntrons , Masculino , Retroelementos , Análise de Sequência de DNA
14.
PLoS Genet ; 5(11): e1000731, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19936020

RESUMO

In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Meiose/genética , Cromossomos Sexuais/genética , Espermatogênese/genética , Testículo/metabolismo , Inativação do Cromossomo X/genética , Animais , Drosophila melanogaster/citologia , Perfilação da Expressão Gênica , Genes de Insetos , Genes Ligados ao Cromossomo X , Genoma de Inseto/genética , Masculino , Mitose , Especificidade de Órgãos/genética , Testículo/citologia
15.
Evolution ; 75(8): 2042-2054, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184262

RESUMO

Spatial and seasonal variations in the environment are ubiquitous. Environmental heterogeneity can affect natural populations and lead to covariation between environment and allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change both with latitude and seasons. Identifying the role of selection in driving these changes is not trivial, because nonadaptive processes can cause similar patterns. Given the environment changes in similar ways across seasons and along the latitudinal gradient, one promising approach may be to look for parallelism between clinal and seasonal changes. Here, we test whether there is a genome-wide correlation between clinal and seasonal changes, and whether the pattern is consistent with selection. Allele frequency estimates were obtained from pooled samples from seven different locations along the east coast of the United States, and across seasons within Pennsylvania. We show that there is a genome-wide correlation between clinal and seasonal variations, which cannot be explained by linked selection alone. This pattern is stronger in genomic regions with higher functional content, consistent with natural selection. We derive a way to biologically interpret these correlations and show that around 3.7% of the common, autosomal variants could be under parallel seasonal and spatial selection. Our results highlight the contribution of natural selection in driving fluctuations in allele frequencies in natural fly populations and point to a shared genomic basis to climate adaptation that happens over space and time in D. melanogaster.


Assuntos
Drosophila melanogaster , Genética Populacional , Animais , Drosophila melanogaster/genética , Frequência do Gene , Variação Genética , Pennsylvania , Estações do Ano , Seleção Genética , Estados Unidos
16.
Nat Commun ; 12(1): 892, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563972

RESUMO

Given their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


Assuntos
Drosophila/genética , Cromossomos Sexuais/genética , Espermatócitos/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X/genética , Genes Ligados ao Cromossomo Y/genética , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Especificidade de Órgãos , RNA Polimerase II/metabolismo , Cromossomos Sexuais/metabolismo , Espermatogênese/genética , Testículo/citologia , Testículo/metabolismo , Transcrição Gênica
17.
Genetics ; 179(4): 2325-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18660539

RESUMO

The Y chromosome and other heterochromatic regions present special challenges for genome sequencing and for the annotation of genes. Here we describe two new genes (ARY and WDY) on the Drosophila melanogaster Y, bringing its number of known single-copy genes to 12. WDY may correspond to the fertility factor kl-1.


Assuntos
Drosophila melanogaster/genética , Genes Ligados ao Cromossomo Y , Cromossomo Y/genética , Aldeído Redutase/genética , Animais , Proteínas de Drosophila/genética , Masculino , Dados de Sequência Molecular
18.
Sci Rep ; 7(1): 10794, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883481

RESUMO

In female mammals, one X chromosome is transcriptionally inactivated (XCI), leading to dosage compensation between sexes, fundamental for embryo viability. A previous study using single-cell RNA-sequencing (scRNA-seq) data proposed that female human preimplantation embryos achieve dosage compensation by downregulating both Xs, a phenomenon named dampening of X expression. Using a novel pipeline on those data, we identified a decrease in the proportion of biallelically expressed X-linked genes during development, consistent with XCI. Moreover, we show that while the expression sum of biallelically expressed X-linked genes decreases with embryonic development, their median expression remains constant, rejecting the hypothesis of X dampening. In addition, analyses of a different dataset of scRNA-seq suggest the appearance of X-linked monoallelic expression by the late blastocyst stage in females, another hallmark of initiation of XCI. Finally, we addressed the issue of dosage compensation between the single active X and autosomes in males and females for the first time during human preimplantation development, showing emergence of X to autosome dosage compensation by the upregulation of the active X chromosome in both male and female embryonic stem cells. Our results show compelling evidence of an early process of X chromosome inactivation during human preimplantation development.


Assuntos
Desenvolvimento Embrionário/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Inativação do Cromossomo X , Alelos , Blastocisto/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Embrião de Mamíferos , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Genes Ligados ao Cromossomo X , Humanos , Masculino , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Fatores Sexuais
19.
Front Genet ; 8: 34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28377786

RESUMO

Eukaryotic genomes frequently exhibit interdependency between transcriptional units, as evidenced by regions of high gene density. It is well recognized that vertebrate microRNAs (miRNAs) are usually embedded in those regions. Recent work has shown that the genomic context is of utmost importance to determine miRNA expression in time and space, thus affecting their evolutionary fates over long and short terms. Consequently, understanding the inter- and intraspecific changes on miRNA genomic architecture may bring novel insights on the basic cellular processes regulated by miRNAs, as well as phenotypic evolution and disease-related mechanisms.

20.
Nat Commun ; 7: 11438, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109497

RESUMO

Increasing evidence has shown that recent miRNAs tend to emerge within coding genes. Here we conjecture that human miRNA evolution is tightly influenced by the genomic context, especially by host genes. Our findings show a preferential emergence of intragenic miRNAs within old genes. We found that miRNAs within old host genes are significantly more broadly expressed than those within young ones. Young miRNAs within old genes are more broadly expressed than their intergenic counterparts, suggesting that young miRNAs have an initial advantage by residing in old genes, and benefit from their hosts' expression control and from the exposure to diverse cellular contexts and target genes. Our results demonstrate that host genes may provide stronger expression constraints to intragenic miRNAs in the long run. We also report associated functional implications, highlighting the genomic context and host genes as driving factors for the expression and evolution of human miRNAs.


Assuntos
Evolução Molecular , Genoma Humano , MicroRNAs/genética , Animais , Regulação da Expressão Gênica , Genômica , Humanos , MicroRNAs/metabolismo , Filogenia , Vertebrados/classificação , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA