RESUMO
PURPOSE: Diffuse pleural mesotheliomas (DPM) with genomic near-haploidization (GNH) represent a novel subtype first recognized by The Cancer Genome Atlas project; however, its clinicopathologic and molecular features remain poorly defined. EXPERIMENTAL DESIGN: We analyzed clinical genomic profiling data from 290 patients with DPM using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay. Allele-specific copy number analysis was performed using the Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) algorithm. RESULTS: A total of 210 patients were evaluable for loss of heterozygosity (LOH) analysis using FACETS from MSK-IMPACT tumor:normal sequencing data. In this cohort, GNH, defined as LOH across >80% of the genome, was detected in 10 cases (4.8%). Compared with non-GNH tumors, GNH DPMs were associated with younger age and less frequent self-reported history of occupational asbestos exposure. Histologically, GNH DPMs were enriched in biphasic subtype (80% vs. 14.5%) and showed abundant tumor-infiltrating lymphocytes (TILs). Genomic analysis revealed a higher frequency of TP53 alterations, whereas SETDB1 mutations were present in nearly all and only in this subset. The clinicopathologic and molecular findings were further validated in a separate cohort. Despite the younger age, patients with GNH DPMs had a shorter overall survival (10.9 vs. 25.4 months, P = 0.004); the poor prognostic impact of GNH remained significant after controlling for biphasic histology. Of three patients with GNH DPMs who received immune checkpoint blockade, two achieved a clinician-assessed partial response. CONCLUSIONS: GNH defines an aggressive subtype of mainly biphasic DPMs in younger patients with recurrent alterations in SETDB1 and TP53. The enrichment in biphasic histology and TILs, together with our preliminary immune checkpoint blockade response data and anecdotal clinical trial data, suggests that further evaluation of immunotherapy may be warranted in this subset.
Assuntos
Neoplasias Pleurais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Neoplasias Pleurais/mortalidade , Mutação , Perda de Heterozigosidade , Mesotelioma/genética , Mesotelioma/patologia , Adulto , Variações do Número de Cópias de DNA , Genômica/métodos , Biomarcadores Tumorais/genética , Prognóstico , Idoso de 80 Anos ou mais , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidadeRESUMO
INTRODUCTION: Microsatellite instability (MSI) and mismatch repair (MMR) deficiency represent a distinct oncogenic process and predict response to immune checkpoint inhibitors (ICIs). The clinicopathologic features of MSI-high (MSI-H) and MMR deficiency (MMR-D) in lung cancers remain poorly characterized. METHODS: MSI status from 5171 patients with NSCLC and 315 patients with SCLC was analyzed from targeted next-generation sequencing data using two validated bioinformatic pipelines. RESULTS: MSI-H and MMR-D were identified in 21 patients with NSCLC (0.41%) and six patients with SCLC (1.9%). Notably, all patients with NSCLC had a positive smoking history, including 11 adenocarcinomas. Compared with microsatellite stable cases, MSI-H was associated with exceptionally high tumor mutational burden (37.4 versus 8.5 muts/Mb, p < 0.0001), MMR mutational signatures (43% versus 0%, p < 0.0001), and somatic biallelic alterations in MLH1 (52% versus 0%, p < 0.0001). Loss of MLH1 and PMS2 expression by immunohistochemistry was found in MLH1 altered and wild-type cases. Similarly, the majority of patients with MSI-H SCLC had evidence of MLH1 inactivation, including two with MLH1 promoter hypermethylation. A single patient with NSCLC with a somatic MSH2 mutation had Lynch syndrome as confirmed by the presence of a germline MSH2 mutation. Among patients with advanced MSI-H lung cancers treated with ICIs, durable clinical benefit was observed in three of eight patients with NSCLC and two of two patients with SCLC. In NSCLC, STK11, KEAP1, and JAK1 were mutated in nonresponders but wild type in responders. CONCLUSIONS: We present a comprehensive clinicogenomic landscape of MSI-H lung cancers and reveal that MSI-H defines a rare subset of lung cancers associated with smoking, high tumor mutational burden, and MLH1 inactivation. Although durable clinical benefit to ICI was observed in some patients, the broad range of responses suggests that clinical activity may be modulated by co-mutational landscapes.
Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Neoplasias Pulmonares , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 2 Homóloga a MutS/genética , Neoplasias Pulmonares/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Proteínas de Ligação a DNA/genética , Fator 2 Relacionado a NF-E2/genética , Proteína 1 Homóloga a MutL/genéticaRESUMO
A subset of glioblastomas (GBMs) harbors potentially druggable oncogenic FGFR3-TACC3 (F3T3) fusions. However, their associated molecular and clinical features are poorly understood. Here we analyze the frequency of F3T3-fusion positivity, its associated genetic and methylation profiles, and its impact on survival in 906 IDH-wildtype GBM patients. We establish an F3T3 prevalence of 4.1% and delineate its associations with cancer signaling pathway alterations. F3T3-positive GBMs had lower tumor mutational and copy-number alteration burdens than F3T3-wildtype GBMs. Although F3T3 fusions were predominantly mutually exclusive with other oncogenic RTK pathway alterations, they did rarely co-occur with EGFR amplification. They were less likely to harbor TP53 alterations. By methylation profiling, they were more likely to be assigned the mesenchymal or RTK II subclass. Despite being older at diagnosis and having similar frequencies of MGMT promoter hypermethylation, patients with F3T3-positive GBMs lived about 8 months longer than those with F3T3-wildtype tumors. While consistent with IDH-wildtype GBM, F3T3-positive GBMs exhibit distinct biological features, underscoring the importance of pursuing molecular studies prior to clinical trial enrollment and targeted treatment.