Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 606(7913): 351-357, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35545677

RESUMO

Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.


Assuntos
Transdução de Sinal Luminoso , Reabilitação Neurológica , Mudanças Depois da Morte , Retina , Animais , Autopsia , Morte Celular/efeitos da radiação , Sistema Nervoso Central/efeitos da radiação , Humanos , Transdução de Sinal Luminoso/efeitos da radiação , Macaca , Camundongos , Retina/metabolismo , Retina/efeitos da radiação , Fatores de Tempo
2.
J Biol Chem ; 297(6): 101401, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774799

RESUMO

The elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein-coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein-coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear. Here, we address this gap in knowledge by studying rod phototransduction. As the rod outer segment is known to adjust its size proportionally to overexpression or reduction of rhodopsin expression, genetic perturbation of rhodopsin cannot be used to resolve this question. Therefore, we turned to high-throughput screening of a diverse library of 50,000 small molecules and used a novel assay for the detection of rhodopsin dimerization. This screen identified nine small molecules that either disrupted or enhanced rhodopsin dimer contacts in vitro. In a subsequent cell-free binding study, we found that all nine compounds decreased intrinsic fluorescence without affecting the overall UV-visible spectrum of rhodopsin, supporting their actions as allosteric modulators. Furthermore, ex vivo electrophysiological recordings revealed that a disruptive, hit compound #7 significantly slowed down the light response kinetics of intact rods, whereas compound #1, an enhancing hit candidate, did not substantially affect the photoresponse kinetics but did cause a significant reduction in light sensitivity. This study provides a monitoring tool for future investigation of the rhodopsin signaling cascade and reports the discovery of new allosteric modulators of rhodopsin dimerization that can also alter rod photoreceptor physiology.


Assuntos
Multimerização Proteica , Células Fotorreceptoras Retinianas Cones/metabolismo , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Rodopsina/antagonistas & inibidores
3.
FASEB J ; 33(8): 9526-9539, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121099

RESUMO

The classic concept that GPCRs function as monomers has been challenged by the emerging evidence of GPCR dimerization and oligomerization. Rhodopsin (Rh) is the only GPCR whose native oligomeric arrangement was revealed by atomic force microscopy demonstrating that Rh exists as a dimer. However, the role of Rh dimerization in retinal physiology is currently unknown. In this study, we identified econazole and sulconazole, two small molecules that disrupt Rh dimer contacts, by implementing a cell-based high-throughput screening assay. Racemic mixtures of identified lead compounds were separated and tested for their stereospecific binding to Rh using UV-visible spectroscopy and intrinsic fluorescence of tryptophan (Trp) 265 after illumination. By following the changes in UV-visible spectra and Trp265 fluorescence in vitro, we found that binding of R-econazole modulates the formation of Meta III and quenches the intrinsic fluorescence of Trp265. In addition, electrophysiological ex vivo recording revealed that R-econazole slows photoresponse kinetics, whereas S-econazole decreased the sensitivity of rods without effecting the kinetics. Thus, this study contributes new methodology to identify compounds that disrupt the dimerization of GPCRs in general and validates the first active compounds that disrupt the Rh dimer specifically.-Getter, T., Gulati, S., Zimmerman, R., Chen, Y., Vinberg, F., Palczewski, K. Stereospecific modulation of dimeric rhodopsin.


Assuntos
Rodopsina/química , Rodopsina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Econazol/farmacologia , Eletrofisiologia , Humanos , Imidazóis/farmacologia , Immunoblotting , Cinética , Multimerização Proteica/efeitos dos fármacos
4.
Vis Neurosci ; 37: E008, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33019947

RESUMO

Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Eletrorretinografia , Retina , Células Ganglionares da Retina
5.
J Biol Chem ; 293(19): 7457-7465, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29549122

RESUMO

Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.


Assuntos
Adaptação Ocular , Proteínas Ativadoras de Guanilato Ciclase/fisiologia , Transdução de Sinal Luminoso/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Cálcio/metabolismo , GMP Cíclico/biossíntese , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trocador de Sódio e Cálcio/metabolismo
6.
Hum Mol Genet ; 24(20): 5915-29, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26246500

RESUMO

Mutations that affect calcium homeostasis (Ca(2+)) in rod photoreceptors are linked to retinal degeneration and visual disorders such as retinitis pigmentosa and congenital stationary night blindness (CSNB). It is thought that the concentration of Ca(2+) in rod outer segments is controlled by a dynamic balance between influx via cGMP-gated (CNG) channels and extrusion via Na(+)/Ca(2+), K(+) exchangers (NCKX1). The extrusion-driven lowering of rod [Ca(2+)]i following light exposure controls their light adaptation and response termination. Mutant NCKX1 has been linked to autosomal-recessive stationary night blindness. However, whether NCKX1 contributes to light adaptation has not been directly tested and the mechanisms by which human NCKX1 mutations cause night blindness are not understood. Here, we report that the deletion of NCKX1 in mice results in malformed outer segment disks, suppressed expression and function of rod CNG channels and a subsequent 100-fold reduction in rod responses, while preserving normal cone responses. The compensating loss of CNG channel function in the absence of NCKX1-mediated Ca(2+) extrusion may prevent toxic Ca(2+) buildup and provides an explanation for the stationary nature of the associated disorder in humans. Surprisingly, the lack of NCKX1 did not compromise rod background light adaptation, suggesting additional Ca(2+)-extruding mechanisms exist in these cells.


Assuntos
Modelos Animais de Doenças , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/metabolismo , Cegueira Noturna/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Trocador de Sódio e Cálcio/genética , Animais , Cálcio/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/fisiopatologia , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Camundongos , Miopia/genética , Miopia/fisiopatologia , Cegueira Noturna/genética , Cegueira Noturna/fisiopatologia , Segmento Externo da Célula Bastonete/fisiologia
7.
Proc Natl Acad Sci U S A ; 111(50): E5445-54, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453064

RESUMO

Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments.


Assuntos
Raios Infravermelhos , Fótons , Células Fotorreceptoras de Vertebrados/fisiologia , Rodopsina/química , Visão Ocular/fisiologia , Absorção de Radiação , Adulto , Animais , Bovinos , Simulação por Computador , Eletrorretinografia , Feminino , Humanos , Isomerismo , Lasers , Masculino , Camundongos , Psicofísica
8.
FASEB J ; 28(8): 3780-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24812086

RESUMO

Photoreceptor cell death is the proximal cause of blindness in many retinal degenerative disorders; hence, understanding the gene regulatory networks that promote photoreceptor survival is at the forefront of efforts to combat blindness. Down-regulation of the microRNA (miRNA)-processing enzyme DICER1 in the retinal pigmented epithelium has been implicated in geographic atrophy, an advanced form of age-related macular degeneration (AMD). However, little is known about the function of DICER1 in mature rod photoreceptor cells, another retinal cell type that is severely affected in AMD. Using a conditional-knockout (cKO) mouse model, we report that loss of DICER1 in mature postmitotic rods leads to robust retinal degeneration accompanied by loss of visual function. At 14 wk of age, cKO mice exhibit a 90% reduction in photoreceptor nuclei and a 97% reduction in visual chromophore compared with those in control littermates. Before degeneration, cKO mice do not exhibit significant defects in either phototransduction or the visual cycle, suggesting that miRNAs play a primary role in rod photoreceptor survival. Using comparative small RNA sequencing analysis, we identified rod photoreceptor miRNAs of the miR-22, miR-26, miR-30, miR-92, miR-124, and let-7 families as potential factors involved in regulating the survival of rods.


Assuntos
RNA Helicases DEAD-box/fisiologia , MicroRNAs/fisiologia , Degeneração Retiniana/etiologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Ribonuclease III/fisiologia , Idade de Início , Animais , Ciclo Celular , Sobrevivência Celular , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Técnicas de Patch-Clamp , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Análise de Sequência de RNA , Tomografia de Coerência Óptica , Visão Ocular
9.
Prog Retin Eye Res ; 100: 101247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365085

RESUMO

Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.


Assuntos
Modelos Animais de Doenças , Degeneração Macular , Animais , Humanos , Degeneração Macular/genética , Degeneração Macular/fisiopatologia , Camundongos , Envelhecimento/fisiologia , Glaucoma/fisiopatologia , Glaucoma/genética , Progressão da Doença
10.
J Vis Exp ; (184)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35815968

RESUMO

Measurements of retinal neuronal light responses are critical to investigating the physiology of the healthy retina, determining pathological changes in retinal diseases, and testing therapeutic interventions. The ex vivo electroretinogram (ERG) allows the quantification of contributions from individual cell types in the isolated retina by addition of specific pharmacological agents and evaluation of tissue-intrinsic changes independently of systemic influences. Retinal light responses can be measured using a specialized ex vivo ERG specimen holder and recording setup, modified from existing patch clamp or microelectrode array equipment. Particularly, the study of ON-bipolar cells, but also of photoreceptors, has been hampered by the slow but progressive decline of light responses in the ex vivo ERG over time. Increased perfusion speed and adjustment of the perfusate temperature improve ex vivo retinal function and maximize response amplitude and stability. The ex vivo ERG uniquely allows the study of individual retinal neuronal cell types. In addition, improvements to maximize response amplitudes and stability allow the investigation of light responses in retina samples from large animals, as well as human donor eyes, making the ex vivo ERG a valuable addition to the repertoire of techniques used to investigate retinal function.


Assuntos
Eletrorretinografia , Doenças Retinianas , Animais , Eletrorretinografia/métodos , Humanos , Microeletrodos , Retina/fisiologia
11.
Front Cell Neurosci ; 15: 662453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867944

RESUMO

Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32784250

RESUMO

INTRODUCTION: Diabetic retinopathy is a major complication of diabetes recently associated with compromised photoreceptor function. Multiple stressors in diabetes, such as hyperglycemia, oxidative stress and inflammatory factors, have been identified, but systemic effects of diabetes on outer retina function are incompletely understood. We assessed photoreceptor physiology in vivo and in isolated retinas to better understand how alterations in the cellular environment compared with intrinsic cellular/molecular properties of the photoreceptors, affect light signal transduction and transmission in the retina in chronic type 2 diabetes. RESEARCH DESIGN AND METHODS: Photoreceptor function was assessed in BKS.Cs-Dock7m+/+Lepr db/J mice, using homozygotes for Leprdb as a model of type 2 diabetes and heterozygotes as non-diabetic controls. In vivo electroretinogram (ERG) was recorded in dark-adapted mice at both 3 and 6 months of age. For ex vivo ERG, isolated retinas were superfused with oxygenated Ames' media supplemented with 30 mM glucose or mannitol as iso-osmotic control and electrical responses to light stimuli were recorded. RESULTS: We found that both transduction and transmission of light signals by rod photoreceptors were compromised in 6-month-old (n=9-10 eyes from 5 animals, ***p<0.001) but not in 3-month-old diabetic mice in vivo (n=4-8 eyes from 2 to 4 animals). In contrast, rod signaling was similar in isolated retinas from 6-month-old control and diabetic mice under normoglycemic conditions (n=11). Acutely elevated glucose ex vivo increased light-evoked rod photoreceptor responses in control mice (n=11, ***p<0.001), but did not affect light responses in diabetic mice (n=11). CONCLUSIONS: Our data suggest that long-term diabetes does not irreversibly change the ability of rod photoreceptors to transduce and mediate light signals. However, type 2 diabetes appears to induce adaptational changes in the rods that render them less sensitive to increased availability of glucose.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Transdução de Sinal Luminoso , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Bastonetes
13.
Elife ; 92020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960171

RESUMO

Neuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision. Whether such homeostatic plasticity occurs during progressive photoreceptor degenerative disease to help maintain normal visual behavior is unknown. We addressed this issue in an established mouse model of Retinitis Pigmentosa caused by the P23H mutation in rhodopsin. We show robust modulation of the retinal transcriptomic network, reminiscent of the neurodevelopmental state, and potentiation of rod - rod bipolar cell signaling following rod photoreceptor degeneration. Additionally, we found highly sensitive night vision in P23H mice even when more than half of the rod photoreceptors were lost. These results suggest retinal adaptation leading to persistent visual function during photoreceptor degenerative disease.


Assuntos
Plasticidade Neuronal/fisiologia , Visão Noturna/fisiologia , Retina/fisiologia , Retinose Pigmentar/fisiopatologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Retina/citologia , Retina/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transcriptoma/genética
14.
Sci Rep ; 10(1): 16041, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994451

RESUMO

Rods and cones use intracellular Ca2+ to regulate many functions, including phototransduction and neurotransmission. The Mitochondrial Calcium Uniporter (MCU) complex is thought to be the primary pathway for Ca2+ entry into mitochondria in eukaryotes. We investigate the hypothesis that mitochondrial Ca2+ uptake via MCU influences phototransduction and energy metabolism in photoreceptors using a mcu-/- zebrafish and a rod photoreceptor-specific Mcu-/- mouse. Using genetically encoded Ca2+ sensors to directly examine Ca2+ uptake in zebrafish cone mitochondria, we found that loss of MCU reduces but does not eliminate mitochondrial Ca2+ uptake. Loss of MCU does not lead to photoreceptor degeneration, mildly affects mitochondrial metabolism, and does not alter physiological responses to light, even in the absence of the Na+/Ca2+, K+ exchanger. Our results reveal that MCU is dispensable for vertebrate photoreceptor function, consistent with its low expression and the presence of an alternative pathway for Ca2+ uptake into photoreceptor mitochondria.


Assuntos
Canais de Cálcio/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Células Fotorreceptoras/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
15.
Cell Death Differ ; 27(3): 1067-1085, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371786

RESUMO

Photoreceptors are specialized neurons that rely on Ca2+ to regulate phototransduction and neurotransmission. Photoreceptor dysfunction and degeneration occur when intracellular Ca2+ homeostasis is disrupted. Ca2+ homeostasis is maintained partly by mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU), which can influence cytosolic Ca2+ signals, stimulate energy production, and trigger apoptosis. Here we discovered that zebrafish cone photoreceptors express unusually low levels of MCU. We expected that this would be important to prevent mitochondrial Ca2+ overload and consequent cone degeneration. To test this hypothesis, we generated a cone-specific model of MCU overexpression. Surprisingly, we found that cones tolerate MCU overexpression, surviving elevated mitochondrial Ca2+ and disruptions to mitochondrial ultrastructure until late adulthood. We exploited the survival of MCU overexpressing cones to additionally demonstrate that mitochondrial Ca2+ uptake alters the distributions of citric acid cycle intermediates and accelerates recovery kinetics of the cone response to light. Cones adapt to mitochondrial Ca2+ stress by decreasing MICU3, an enhancer of MCU-mediated Ca2+ uptake, and selectively transporting damaged mitochondria away from the ellipsoid toward the synapse. Our findings demonstrate how mitochondrial Ca2+ can influence physiological and metabolic processes in cones and highlight the remarkable ability of cone photoreceptors to adapt to mitochondrial stress.


Assuntos
Adaptação Fisiológica , Cálcio/metabolismo , Luz , Metaboloma , Mitocôndrias/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Estresse Fisiológico , Adaptação Fisiológica/efeitos da radiação , Animais , Canais de Cálcio/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Isocitrato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Cinética , Transdução de Sinal Luminoso/efeitos da radiação , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Modelos Biológicos , Fenótipo , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Estresse Fisiológico/efeitos da radiação , Peixe-Zebra
16.
J Vis ; 9(12): 9.1-17, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20053100

RESUMO

The leading edge of the a-wave of the ERG is generally believed to accurately reflect the changes in the circulating current through the cGMP-gated channels in the outer segment plasma membrane of rods and cones. The aspartate-isolated mammalian electroretinogram (ERG) to a rod-saturating flash contains a fast "nose"-like wave temporally overlapping with the a-wave. We characterize the nature of this nose, investigate the membrane current mechanisms involved in the nose mechanism, and propose a model that can explain the generation of the nose component in the rod inner segment. On the basis of pharmacological treatments and perfusate ion composition alterations we rule out the possible role of most of the known rod membrane current mechanisms that might participate in the generation of the ERG nose component and we propose that the nose is generated by the interplay of voltage-dependent K(x) and h channels together with the Na(+)/K(+) ATPase. Our results strengthen the view that the kinetics of the leading edge of the ERG photoresponses should correspond to that of the outer segment light-sensitive current.


Assuntos
Ácido Aspártico/farmacologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Carbenoxolona/farmacologia , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Césio/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Adaptação à Escuridão , Eletrorretinografia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Potenciais da Membrana , Camundongos , Estimulação Luminosa , Potássio/metabolismo , Potássio/farmacologia , Canais de Potássio/fisiologia , Pirimidinas/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Eletricidade Estática
17.
Science ; 366(6470): 1251-1255, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806815

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subset of cells that participate in image-forming and non-image-forming visual responses. Although both functional and morphological subtypes of ipRGCs have been described in rodents, parallel functional subtypes have not been identified in primate or human retinas. In this study, we used a human organ donor preparation method to measure human ipRGCs' photoresponses. We discovered three functional ipRGC subtypes with distinct sensitivities and responses to light. The response of one ipRGC subtype appeared to depend on exogenous chromophore supply, and this response is conserved in both human and mouse retinas. Rods and cones also provided input to ipRGCs; however, each subtype integrated outer retina light signals in a distinct fashion.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Ganglionares da Retina/fisiologia , Animais , Humanos , Luz , Camundongos , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
18.
Neuroscience ; 416: 100-108, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31400484

RESUMO

Two-photon vision arises from the perception of pulsed infrared (IR) laser light as color corresponding to approximately half of the laser wavelength. The physical process responsible for two-photon vision in rods has been delineated and verified experimentally only recently. Here, we sought to determine whether IR light can also be perceived by mammalian cone photoreceptors via a similar activation mechanism. To investigate selectively mammalian cone signaling in mice, we used animals with disabled rod signal transduction. We found that, contrary to the expected progressive sensitivity decrease based on the one-photon cone visual pigment spectral template, the sensitivity of mouse cone photoreceptors decreases only up to 800 nm and then increases at 900 nm and 1000 nm. Similarly, in experiments with the parafoveal region of macaque retinas, we found that the spectral sensitivity of primate cones diverged above the predicted one-photon spectral sensitivity template beyond 800 nm. In both cases, efficient detection of IR light was dependent on minimizing the dispersion of the ultrashort light pulses, indicating a non-linear two-photon activation process. Together, our studies demonstrate that mammalian cones can be activated by near IR light by a nonlinear two-photon excitation. Our results pave the way for the creation of a two-photon IR-based ophthalmoscope for the simultaneous imaging and functional testing of human retinas as a novel tool for the diagnosis and treatment of a wide range of visual disorders.


Assuntos
Luz , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Visão Ocular/fisiologia , Animais , Camundongos Endogâmicos C57BL , Fótons , Transdução de Sinais/fisiologia
19.
Sci Rep ; 8(1): 15864, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367097

RESUMO

Vision is mediated by two types of photoreceptors: rods, enabling vision in dim light; and cones, which function in bright light. Despite many similarities in the components of their respective phototransduction cascades, rods and cones have distinct sensitivity, response kinetics, and adaptation capacity. Cones are less sensitive and have faster responses than rods. In addition, cones can function over a wide range of light conditions whereas rods saturate in moderately bright light. Calcium plays an important role in regulating phototransduction and light adaptation of rods and cones. Notably, the two dominant Ca2+-feedbacks in rods and cones are driven by the identical calcium-binding proteins: guanylyl cyclase activating proteins 1 and 2 (GCAPs), which upregulate the production of cGMP; and recoverin, which regulates the inactivation of visual pigment. Thus, the mechanisms producing the difference in adaptation capacity between rods and cones have remained poorly understood. Using GCAPs/recoverin-deficient mice, we show that mammalian cones possess another Ca2+-dependent mechanism promoting light adaptation. Surprisingly, we also find that, unlike in mouse rods, a unique Ca2+-independent mechanism contributes to cone light adaptation. Our findings point to two novel adaptation mechanisms in mouse cones that likely contribute to the great adaptation capacity of cones over rods.


Assuntos
Adaptação Ocular/fisiologia , Cálcio/metabolismo , Luz , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Animais , GMP Cíclico/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/deficiência , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Íons/química , Cinética , Camundongos , Camundongos Knockout , Recoverina/deficiência , Recoverina/genética , Recoverina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Regulação para Cima/efeitos da radiação
20.
Prog Retin Eye Res ; 67: 87-101, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29883715

RESUMO

Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Transdução de Sinal Luminoso/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Adaptação Ocular/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA