Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 79(6): 902-916.e6, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32768407

RESUMO

A long-standing conundrum is how mitotic chromosomes can compact, as required for clean separation to daughter cells, while maintaining close parallel alignment of sister chromatids. Pursuit of this question, by high resolution 3D fluorescence imaging of living and fixed mammalian cells, has led to three discoveries. First, we show that the structural axes of separated sister chromatids are linked by evenly spaced "mini-axis" bridges. Second, when chromosomes first emerge as discrete units, at prophase, they are organized as co-oriented sister linear loop arrays emanating from a conjoined axis. We show that this same basic organization persists throughout mitosis, without helical coiling. Third, from prophase onward, chromosomes are deformed into sequential arrays of half-helical segments of alternating handedness (perversions), accompanied by correlated kinks. These arrays fluctuate dynamically over <15 s timescales. Together these discoveries redefine the foundation for thinking about the evolution of mitotic chromosomes as they prepare for anaphase segregation.


Assuntos
Proteínas de Ciclo Celular/genética , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Mitose/genética , Adenosina Trifosfatases/genética , Anáfase/genética , Animais , Proteínas de Ciclo Celular/isolamento & purificação , Cromátides/genética , Proteínas Cromossômicas não Histona , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/isolamento & purificação , Imageamento Tridimensional , Mamíferos , Metáfase/genética , Prófase/genética
2.
Curr Biol ; 31(2): 283-296.e7, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157029

RESUMO

Kinetochores direct chromosome segregation in mitosis and meiosis. Faithful gamete formation through meiosis requires that kinetochores take on new functions that impact homolog pairing, recombination, and the orientation of kinetochore attachment to microtubules in meiosis I. Using an unbiased proteomics pipeline, we determined the composition of centromeric chromatin and kinetochores at distinct cell-cycle stages, revealing extensive reorganization of kinetochores during meiosis. The data uncover a network of meiotic chromosome axis and recombination proteins that bind to centromeres in the absence of the microtubule-binding outer kinetochore sub-complexes during meiotic prophase. We show that the Ctf19cCCAN inner kinetochore complex is essential for kinetochore organization in meiosis. Our functional analyses identify a Ctf19cCCAN-dependent kinetochore assembly pathway that is dispensable for mitotic growth but becomes critical upon meiotic entry. Therefore, changes in kinetochore composition and a distinct assembly pathway specialize meiotic kinetochores for successful gametogenesis.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Segregação de Cromossomos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/isolamento & purificação , Mitose , Proteômica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
3.
Elife ; 42015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26653857

RESUMO

During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.


Assuntos
Centrômero , Troca Genética , Cinetocoros , Meiose , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas do Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA