Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ecol Lett ; 22(4): 748-763, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30687988

RESUMO

To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6  ∘ C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1  ∘ C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2  ∘ C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.


Assuntos
Mudança Climática , Solo , Plantas , Temperatura
2.
Ann Bot ; 109(2): 473-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156401

RESUMO

BACKGROUND AND AIMS: The low-temperature range limit of tree species may be determined by their ability to produce and disperse viable seeds. Biological processes such as flowering, pollen transfer, pollen tube growth, fertilization, embryogenesis and seed maturation are expected to be affected by cold temperatures. The aim of this study was to assess the quality of seeds of nine broad-leaved tree species close to their elevational limit. METHODS: We studied nine, mostly widely distributed, European broad-leaved tree species in the genera Acer, Fagus, Fraxinus, Ilex, Laburnum, Quercus, Sorbus and Tilia. For each species, seeds were collected from stands close to optimal growth conditions (low elevation) and from marginal stands (highest elevation), replicated in two regions in the Swiss Alps. Measurements included seed weight, seed size, storage tissue quality, seed viability and germination success. KEY RESULTS: All species examined produced a lot of viable seeds at their current high-elevation range limit during a summer ranked 'normal' by long-term temperature records. Low- and high-elevation seed sources showed hardly any trait differences. The concentration of non-structural carbohydrates tended to be higher at high elevation. Additionally, in one species, Sorbus aucuparia, all measured traits showed significantly higher seed quality in high-elevation seed sources. CONCLUSIONS: For the broad-leaved tree taxa studied, the results are not in agreement with the hypothesis of reduced quality of seeds in trees at their high-elevation range limits. Under the current climatic conditions, seed quality does not constitute a serious constraint in the reproduction of these broad-leaved tree species at their high-elevation limit.


Assuntos
Sementes/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Adaptação Fisiológica , Altitude , Temperatura Baixa , Meio Ambiente , Europa (Continente) , Geografia , Germinação/fisiologia , Reprodução/fisiologia , Dispersão de Sementes , Sementes/química , Árvores/química
4.
Plant Biol (Stuttg) ; 24(7): 1132-1145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103113

RESUMO

During the particularly severe hot summer drought in 2018, widespread premature leaf senescence was observed in several broadleaved tree species in Central Europe, particularly in European beech (Fagus sylvatica L.). For beech, it is yet unknown whether the drought evoked a decline towards tree mortality or whether trees can recover in the longer term. In this study, we monitored crown dieback, tree mortality and secondary drought damage symptoms in 963 initially live beech trees that exhibited either premature or normal leaf senescence in 2018 in three regions in northern Switzerland from 2018 to 2021. We related the observed damage to multiple climate- and stand-related parameters. Cumulative tree mortality continuously increased up to 7.2% and 1.3% in 2021 for trees with premature and normal leaf senescence in 2018, respectively. Mean crown dieback in surviving trees peaked at 29.2% in 2020 and 8.1% in 2019 for trees with premature and normal leaf senescence, respectively. Thereafter, trees showed first signs of recovery. Crown damage was more pronounced and recovery was slower for trees that showed premature leaf senescence in 2018, for trees growing on drier sites, and for larger trees. The presence of bleeding cankers peaked at 24.6% in 2019 and 10.7% in 2020 for trees with premature and normal leaf senescence, respectively. The presence of bark beetle holes peaked at 22.8% and 14.8% in 2021 for trees with premature and normal leaf senescence, respectively. Both secondary damage symptoms occurred more frequently in trees that had higher proportions of crown dieback and/or showed premature senescence in 2018. Our findings demonstrate context-specific differences in beech mortality and recovery reflecting the importance of regional and local climate and soil conditions. Adapting management to increase forest resilience is gaining importance, given the expected further beech decline on dry sites in northern Switzerland.


Assuntos
Fagus , Fagus/fisiologia , Secas , Suíça , Senescência Vegetal , Árvores/fisiologia
5.
Sci Total Environ ; 851(Pt 1): 157926, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985592

RESUMO

Ongoing climate warming is increasing evapotranspiration, a process that reduces plant-available water and aggravates the impact of extreme droughts during the growing season. Such an exceptional hot drought occurred in Central Europe in 2018 and caused widespread defoliation in mid-summer in European beech (Fagus sylvatica L.) forests. Here, we recorded crown damage in 2021 in nine mature even-aged beech-dominated stands in northwestern Switzerland along a crown damage severity gradient (low, medium, high) and analyzed tree-ring widths of 21 mature trees per stand. We aimed at identifying predisposing factors responsible for differences in crown damage across and within stands such as tree growth characteristics (average growth rates and year-to-year variability) and site-level variables (mean canopy height, soil properties). We found that stand-level crown damage severity was strongly related to soil water availability, inferred from tree canopy height and plant available soil water storage capacity (AWC). Trees were shorter in drier stands, had higher year-to-year variability in radial growth, and showed higher growth sensitivity to moisture conditions of previous late summer than trees growing on soils with sufficient AWC, indicating that radial growth in these forests is principally limited by soil water availability. Within-stand variation of post-drought crown damage corresponded to growth rate and tree size (diameter at breast height, DBH), i.e., smaller and slower-growing trees that face more competition, were associated with increased crown damage after the 2018 drought. These findings point to tree vigor before the extreme 2018 drought (long-term relative growth rate) as an important driver of damage severity within and across stands. Our results suggest that European beech is less likely to be able to cope with future climate change-induced extreme droughts on shallow soils with limited water retention capacity.


Assuntos
Fagus , Secas , Florestas , Solo , Árvores , Água
6.
J Evol Biol ; 23(1): 87-97, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19895655

RESUMO

Biotrophic fungal pathogens are expected to have adapted to their host plants for phenological synchrony, to optimize the possibility of contacts leading to infections. We investigated the patterns and causes of variation in phenological synchrony in the oak-powdery mildew pathosystem, a major disease in natural ecosystems. The study was carried out along an altitudinal gradient, representing a wide temperature range, in mature oak stands. Both sporulation (pathogen infective stage) and oak flushing (host susceptible stage) were delayed with increasing elevation, but with a significantly different sensitivity for the two species. This resulted in a variable host-pathogen synchrony along the gradient. A common garden experiment did not give evidence of among-population genetic differentiation (past adaptation) for fungal phenology. This could be explained by the high phenotypic variation in phenology within host populations, precluding selection on fungal phenology at the population scale, but possibly favouring adaptation at the within-population scale. Phenotypic plasticity was the major cause of the observed variation in the phenology of the fungal populations.


Assuntos
Adaptação Fisiológica , Ascomicetos/fisiologia , Quercus/microbiologia , Altitude , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Quercus/genética , Quercus/crescimento & desenvolvimento , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA