Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769161

RESUMO

Pancreatic cancer (PC) is one of the most aggressive malignancies. A combination of targeted therapies could increase the therapeutic efficacy in tumors with heterogeneous target expression. Overexpression of the human epidermal growth factor receptor type 3 (HER3) and the epithelial cell adhesion molecule (EpCAM) in up to 40% and 30% of PCs, respectively, is associated with poor prognosis and highlights the relevance of these targets. Designed ankyrin repeat protein (DARPin) Ec1 fused with the low immunogenic bacterial toxin LoPE provides specific and potent cytotoxicity against EpCAM-expressing cancer cells. Here, we investigated whether the co-targeting of HER3 using the monoclonal antibody seribantumab (MM-121) and of EpCAM using Ec1-LoPE would improve the therapeutic efficacy in comparison to the individual agents. Radiolabeled 99mTc(CO)3-Ec1-LoPE showed specific binding with rapid internalization in EpCAM-expressing PC cells. MM-121 did not interfere with the binding of Ec1-LoPE to EpCAM. Evaluation of cytotoxicity indicated synergism between Ec1-LoPE and MM-121 in vitro. An experimental therapy study using Ec1-LoPE and MM-121 in mice bearing EpCAM- and HER3-expressing BxPC3 xenografts demonstrated the feasibility of the therapy. Further development of the co-targeting approach using HER3 and EpCAM could therefore be justified.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Molécula de Adesão da Célula Epitelial , Xenoenxertos , Estudos de Viabilidade , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
2.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066684

RESUMO

Efficient treatment of disseminated triple-negative breast cancer (TNBC) remains an unmet clinical need. The epithelial cell adhesion molecule (EpCAM) is often overexpressed on the surface of TNBC cells, which makes EpCAM a potential therapeutic target. Radionuclide molecular imaging of EpCAM expression might permit selection of patients for EpCAM-targeting therapies. In this study, we evaluated a scaffold protein, designed ankyrin repeat protein (DARPin) Ec1, for imaging of EpCAM in TNBC. DARPin Ec1 was labeled with a non-residualizing [125I]I-para-iodobenzoate (PIB) label and a residualizing [99mTc]Tc(CO)3 label. Both imaging probes retained high binding specificity and affinity to EpCAM-expressing MDA-MB-468 TNBC cells after labeling. Internalization studies showed that Ec1 was retained on the surface of MDA-MB-468 cells to a high degree up to 24 h. Biodistribution in Balb/c nu/nu mice bearing MDA-MB-468 xenografts demonstrated specific uptake of both [125I]I-PIB-Ec1 and [99mTc]Tc(CO)3-Ec1 in TNBC tumors. [125I]I-PIB-Ec1 had appreciably lower uptake in normal organs compared with [99mTc]Tc(CO)3-Ec1, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by micro-Single-Photon Emission Computed Tomography/Computed Tomography (microSPECT/CT) imaging. In conclusion, an indirectly radioiodinated Ec1 is the preferable probe for imaging of EpCAM in TNBC.


Assuntos
Molécula de Adesão da Célula Epitelial/análise , Imagem Molecular/métodos , Sondas Moleculares/química , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Iodobenzoatos/química , Camundongos Endogâmicos BALB C , Sondas Moleculares/farmacocinética , Proteínas Musculares/química , Proteínas Nucleares/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
EMBO Rep ; 16(2): 232-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25520322

RESUMO

Neurotransmission involves the exo-endocytic cycling of synaptic vesicle (SV) membranes. Endocytic membrane retrieval and clathrin-mediated SV reformation require curvature-sensing and membrane-bending BAR domain proteins such as endophilin A. While their ability to sense and stabilize curved membranes facilitates membrane recruitment of BAR domain proteins, the precise mechanisms by which they are targeted to specific sites of SV recycling has remained unclear. Here, we demonstrate that the multi-domain scaffold intersectin 1 directly associates with endophilin A to facilitate vesicle uncoating at synapses. Knockout mice deficient in intersectin 1 accumulate clathrin-coated vesicles at synapses, a phenotype akin to loss of endophilin function. Intersectin 1/endophilin A1 complex formation is mediated by direct binding of the SH3B domain of intersectin to a non-canonical site on the SH3 domain of endophilin A1. Consistent with this, intersectin-binding defective mutant endophilin A1 fails to rescue clathrin accumulation at neuronal synapses derived from endophilin A1-3 triple knockout (TKO) mice. Our data support a model in which intersectin aids endophilin A recruitment to sites of clathrin-mediated SV recycling, thereby facilitating vesicle uncoating.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Sinapses/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Knockout , Microscopia Confocal
4.
J Neurosci ; 35(44): 14756-70, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538647

RESUMO

Many endocytic proteins accumulate in the reserve pool of synaptic vesicles (SVs) in synapses and relocalize to the endocytic periactive zone during neurotransmitter release. Currently little is known about their functions outside the periactive zone. Here we show that in the Drosophila neuromuscular junction (NMJ), the endocytic scaffolding protein Dap160 colocalizes during the SV cycle and forms a functional complex with the SV-associated phosphoprotein synapsin, previously implicated in SV clustering. This direct interaction is strongly enhanced under phosphorylation-promoting conditions and is essential for proper localization of synapsin at NMJs. In a dap160 rescue mutant lacking the interaction between Dap160 and synapsin, perturbed reclustering of SVs during synaptic activity is observed. Our data indicate that in addition to the function in endocytosis, Dap160 is a component of a network of protein-protein interactions that serves for clustering of SVs in conjunction with synapsin. During the SV cycle, Dap160 interacts with synapsin dispersed from SVs and helps direct synapsin back to vesicles. The proteins function in synergy to achieve efficient clustering of SVs in the reserve pool. SIGNIFICANCE STATEMENT: We provide the first evidence for the function of the SH3 domain interaction in synaptic vesicle (SV) organization at the synaptic active zone. Using Drosophila neuromuscular junction as a model synapse, we describe the molecular mechanism that enables the protein implicated in SV clustering, synapsin, to return to the pool of vesicles during neurotransmitter release. We also identify the endocytic scaffolding complex that includes Dap160 as a regulator of the events linking exocytosis and endocytosis in synapses.


Assuntos
Proteínas de Drosophila/fisiologia , Endocitose/fisiologia , Junção Neuromuscular/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Análise por Conglomerados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exocitose/fisiologia , Feminino , Masculino , Junção Neuromuscular/ultraestrutura , Vesículas Sinápticas/ultraestrutura
5.
J Cell Sci ; 126(Pt 4): 1021-31, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23321638

RESUMO

Dynamin-associated protein 160 kDa (Dap160)/intersectin interacts with several synaptic proteins and affects endocytosis and synapse development. The functional role of the different protein interaction domains is not well understood. Here we show that Drosophila Dap160 lacking the dynamin-binding SH3 domains does not affect the development of the neuromuscular junction but plays a key role in synaptic vesicle recycling. dap160 mutants lacking dynamin-interacting domains no longer accumulate dynamin properly at the periactive zone, and it becomes dispersed in the bouton during stimulation. This is accompanied by a reduction in uptake of the dye FM1-43 and an accumulation of large vesicles and membrane invaginations. However, we do not observe an increase in the number of clathrin-coated intermediates. We also note a depression in evoked excitatory junction potentials (EJPs) during high-rate stimulation, accompanied by aberrantly large miniature EJPs. The data reveal the important role of Dap160 in the targeting of dynamin to the periactive zone, where it is required to suppress bulk synaptic vesicle membrane retrieval during high-frequency activity.


Assuntos
Proteínas de Drosophila/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Drosophila/genética , Eletrofisiologia , Imuno-Histoquímica , Junção Neuromuscular/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética
6.
J Cell Sci ; 124(Pt 1): 133-43, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21172823

RESUMO

Clathrin-mediated vesicle recycling in synapses is maintained by a unique set of endocytic proteins and interactions. We show that endophilin localizes in the vesicle pool at rest and in spirals at the necks of clathrin-coated pits (CCPs) during activity in lamprey synapses. Endophilin and dynamin colocalize at the base of the clathrin coat. Protein spirals composed of these proteins on lipid tubes in vitro have a pitch similar to the one observed at necks of CCPs in living synapses, and lipid tubules are thinner than those formed by dynamin alone. Tubulation efficiency and the amount of dynamin recruited to lipid tubes are dramatically increased in the presence of endophilin. Blocking the interactions of the endophilin SH3 domain in situ reduces dynamin accumulation at the neck and prevents the formation of elongated necks observed in the presence of GTPγS. Therefore, endophilin recruits dynamin to a restricted part of the CCP neck, forming a complex, which promotes budding of new synaptic vesicles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Dinamina I/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/genética , Dinamina I/química , Dinamina I/genética , Humanos , Lampreias , Ligação Proteica , Estrutura Terciária de Proteína , Sinapses/química , Sinapses/genética , Sinapses/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética
7.
Proc Natl Acad Sci U S A ; 107(9): 4206-11, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20160082

RESUMO

Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P(2)]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the "side sites" of the AP2 alpha- and beta-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Vesículas Sinápticas/metabolismo , Complexo 2 de Proteínas Adaptadoras/química , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Endocitose , Lampreias , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Homologia de Sequência de Aminoácidos , Domínios de Homologia de src
8.
Pharmaceutics ; 14(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36015242

RESUMO

Overexpression of the human epidermal growth factor receptor 2 (HER2) in breast and gastric cancer is exploited for targeted therapy using monoclonal antibodies and antibody-drug conjugates. Small engineered scaffold proteins, such as the albumin binding domain (ABD) derived affinity proteins (ADAPTs), are a promising new format of targeting probes for development of drug conjugates with well-defined structure and tunable pharmacokinetics. Radiolabeled ADAPT6 has shown excellent tumor-targeting properties in clinical trials. Recently, we developed a drug conjugate based on the HER2-targeting ADAPT6 fused to an albumin binding domain (ABD) for increased bioavailability and conjugated to DM1 for cytotoxic action, designated as ADAPT6-ABD-mcDM1. In this study, we investigated the therapeutic efficacy of this conjugate in mice bearing HER2-expressing SKOV3 ovarian cancer xenografts. A secondary aim was to evaluate several formats of imaging probes for visualization of HER2 expression in tumors. Administration of ADAPT6-ABD-mcDM1 provided a significant delay of tumor growth and increased the median survival of the mice, in comparison with both a non-targeting homologous construct (ADAPTNeg-ABD-mcDM1) and the vehicle-treated groups, without inducing toxicity to liver or kidneys. Moreover, the evaluation of imaging probes showed that small scaffold proteins, such as 99mTc(CO)3-ADAPT6 or the affibody molecule 99mTc-ZHER2:41071, are well suited as diagnostic companions for potential stratification of patients for ADAPT6-ABD-mcDM1-based therapy.

9.
J Nucl Med ; 63(7): 1046-1051, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34711617

RESUMO

Treatment of patients with human epidermal growth factor receptor 2 (HER2)-expressing tumors using the monoclonal antibody trastuzumab increases survival. The Affibody-based peptide nucleic acid (PNA)-mediated pretargeted radionuclide therapy has demonstrated efficacy against HER2-expressing xenografts in mice. Structural studies suggest that Affibody molecules and trastuzumab bind to different epitopes on HER2. The aim of this study was to test the hypothesis that a combination of PNA-mediated pretargeted radionuclide therapy and trastuzumab treatment of HER2-expressing xenografts can extend survival compared with monotherapies. Methods: Mutual interference of the primary pretargeting probe ZHER2:342-SR-HP1 and trastuzumab in binding to HER2-expressing cell lines was investigated in vitro. Experimental therapy evaluated the survival of mice bearing HER2-expressing SKOV-3 xenografts after treatment with vehicle, trastuzumab only, pretargeting using Affibody-PNA chimera ZHER2:342-SR-HP1 and complementary probe 177Lu-HP2, and combination of trastuzumab and pretargeting. The ethical permit limited the study to 90 d. The animals' weights were monitored during the study. After study termination, samples of liver and kidneys were evaluated by a veterinary pathologist for toxicity signs. Results: The presence of a large molar excess of trastuzumab had no influence on the affinity of ZHER2:342-SR-HP1 binding to HER2-expressing cells in vitro. The affinity of trastuzumab was not affected by a large excess of ZHER2:342-SR-HP1 The median survival of mice treated with trastuzumab (75.5 d) was significantly longer than the survival of mice treated with a vehicle (59.5 d). Median survival of mice treated with pretargeting was not reached by day 90. Six mice of 10 in this group survived, and 2 had complete remission. All mice in the combination treatment group survived, and tumors in 7 mice had disappeared at study termination. There was no significant difference between animal weights in the different treatment groups. No significant pathologic alterations were detected in livers and kidneys of treated animals. Conclusion: Treatment of mice bearing HER2-expressing xenografts with the combination of trastuzumab and Affibody-mediated PNA-based radionuclide pretargeting significantly increased survival compared with monotherapies. Cotreatment was not toxic for normal tissues.


Assuntos
Neoplasias , Ácidos Nucleicos Peptídicos , Trastuzumab , Animais , Proteínas Cromossômicas não Histona , Humanos , Camundongos , Ácidos Nucleicos Peptídicos/farmacologia , Radioisótopos , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Pharmaceutics ; 13(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834389

RESUMO

Human epidermal growth factor receptor 2 (HER2) is a clinically validated target for breast cancer therapy. Previously, a drug-fused HER2-targeting affinity protein construct successfully extended the survival of mice bearing HER2-expressing xenografts. The aim of this study was to evaluate the influence of the number and positioning of the protein domains in the drug conjugate. Seven HER2-targeting affibody-based constructs, including one or two affibody molecules (Z) with or without an albumin-binding domain (ABD), namely Z, Z-ABD, ABD-Z, Z-Z, Z-Z-ABD, Z-ABD-Z, and ABD-Z-Z, were evaluated on their effects on cell growth, in vivo targeting, and biodistribution. The biodistribution study demonstrated that the monomeric constructs had longer blood retention and lower hepatic uptake than the dimeric ones. A dimeric construct, specifically ABD-Z-Z, could stimulate the proliferation of HER2 expressing SKOV-3 cells in vitro and the growth of tumors in vivo, whereas the monomeric construct Z-ABD could not. These two constructs demonstrated a therapeutic effect when coupled to mcDM1; however, the effect was more pronounced for the non-stimulating Z-ABD. The median survival of the mice treated with Z-ABD-mcDM1 was 63 days compared to the 37 days for those treated with ABD-Z-Z-mcDM1 or for the control animals. Domain permutation of an ABD-fused HER2-targeting affibody-based drug conjugate significantly influences tumor cell proliferation and therapy efficacy. The monomeric conjugate Z-ABD is the most promising format for targeted delivery of the cytotoxic drug DM1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA