Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38373513

RESUMO

The effect of anesthesia/euthanasia with ethyl 3-aminobenzoate methanesulfonate (MS-222) on the oxidative status of Hyla arborea tadpoles was examined to determine whether the use of the anesthetic can confound the experimental results of the oxidative stress-based investigation. The experiment was conducted on two groups of tadpoles reared at different temperatures to produce differences in antioxidant capacity between the groups. After development at different temperatures (20 °C and 25 °C), the animals were exposed to different concentrations of MS-222 (0, 0.1, 1, and 5 g/L) for 15 min. The higher temperature decreased catalase activity, glutathione and protein carbonyl levels and increased glutathione reductase activity. The glutathione level and glutathione/thiol-related parameters were significantly changed after MS-222 exposure. However, individuals from the different temperature groups responded differently to the tested anesthetic, pointing to the possible influence of the initial levels of antioxidant capacity. The analysis of the interaction between the factors (temperature and MS-222) confirmed that the anesthetic can confound the results regarding the effects of temperature on the oxidative status parameters. The concentration of 0.1 g/L MS-222 had the lowest influence on the alterations in oxidative status and the results of the effect of temperature. A brief review of the current literature on the use of MS-222 in tadpoles made clear the absence of precise information on anesthetic concentration and exposure time. Similar studies should be repeated and extended to other amphibian species and other factors of interest to provide better guidance on tadpole anesthesia/euthanasia for future experiments that consider oxidative status parameters.


Assuntos
Aminobenzoatos , Anestésicos , Antioxidantes , Humanos , Animais , Anestésicos/toxicidade , Ésteres , Glutationa , Mesilatos , Estresse Oxidativo
2.
J Exp Zool A Ecol Integr Physiol ; 341(7): 753-765, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651613

RESUMO

Amphibian larvae inhabiting temporary ponds often exhibit the capacity to accelerate development and undergo metamorphosis in challenging conditions like desiccation. However, not all species exhibit this ability, the yellow-bellied toad (Bombina variegata) is one such example. The underlying mechanisms behind the inability to accelerate development under desiccation remain largely unexplored. The hypothalamic-pituitary-interrenal (HPI) axis and corticosterone (CORT), which act synergistically with thyroid hormone, are thought to facilitate metamorphosis in response to desiccation stress. In this study, we aimed to investigate whether modification in the HPI axis, particularly CORT levels, contributes to the absence of adaptive plasticity in B. variegata under desiccation stress. The study design included four treatments: high water level, high water level with exogenous CORT, low water level, and low water level with metyrapone (a CORT synthesis inhibitor). The main objective was to evaluate the effects of these treatments on whole-body corticosterone levels, life history, morphological traits, and oxidative stress parameters during the prometamorphic and metamorphic climax developmental stages. While low water level had no effect on total corticosterone levels, larval period, body condition index, and metamorphic body shape, it negatively affected metamorph size, mass, and growth rate. Our findings suggest that constant exposure to desiccation stress over generations may have led to modifications in the HPI axis activity in B. variegata, resulting in adaptation to changes in water level, evident through the absence of stress response. Consequently, CORT may not be a relevant stress indicator in desiccation conditions for this species.


Assuntos
Anuros , Corticosterona , Larva , Animais , Corticosterona/farmacologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos dos fármacos , Anuros/fisiologia , Anuros/crescimento & desenvolvimento , Adaptação Fisiológica , Lagoas , Bufonidae/fisiologia , Metamorfose Biológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA