Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Care ; 25(1): 199, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108029

RESUMO

BACKGROUND: Heterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. METHODS: We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS-calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]-and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. RESULTS: We studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52-71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: - 11.8 to - 7.4 mL/cmH2O p < 0.001), and although females presented higher body mass index (BMI), association of BMI with CRS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease - 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI - 0.48 to - 0.14, p < 0.001). Overall, 28-day ICU mortality, accounting for the competing risk of being discharged within the period, was 35.6% (SE 1.7). Cox proportional hazard analysis demonstrated that CRS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02-1.28, p = 0.018). CONCLUSIONS: This multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study . TRIAL REGISTRATION: ACTRN12620000421932.


Assuntos
COVID-19/complicações , COVID-19/terapia , Complacência Pulmonar/fisiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Adulto , Estudos de Coortes , Cuidados Críticos/métodos , Europa (Continente) , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
2.
Vaccine ; 40(22): 3072-3084, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35450781

RESUMO

Uncertainty surrounding the risk of developing and dying from Thrombosis and Thrombocytopenia Syndrome (TTS) associated with the AstraZeneca (AZ) COVID-19 vaccine may contribute to vaccine hesitancy. A model is urgently needed to combine and effectively communicate evidence on the risks versus benefits of the AZ vaccine. We developed a Bayesian network to consolidate evidence on risks and benefits of the AZ vaccine, and parameterised the model using data from a range of empirical studies, government reports, and expert advisory groups. Expert judgement was used to interpret the available evidence and determine the model structure, relevant variables, data for inclusion, and how these data were used to inform the model. The model can be used as a decision-support tool to generate scenarios based on age, sex, virus variant and community transmission rates, making it useful for individuals, clinicians, and researchers to assess the chances of different health outcomes. Model outputs include the risk of dying from TTS following the AZ COVID-19 vaccine, the risk of dying from COVID-19 or COVID-19-associated atypical severe blood clots under different scenarios. Although the model is focused on Australia, it can be adapted to international settings by re-parameterising it with local data. This paper provides detailed description of the model-building methodology, which can be used to expand the scope of the model to include other COVID-19 vaccines, booster doses, comorbidities and other health outcomes (e.g., long COVID) to ensure the model remains relevant in the face of constantly changing discussion on risks versus benefits of COVID-19 vaccination.


Assuntos
COVID-19 , Trombocitopenia , Teorema de Bayes , COVID-19/complicações , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Humanos , Síndrome de COVID-19 Pós-Aguda
3.
PLOS Digit Health ; 1(12): e0000142, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36812628

RESUMO

We describe an experimental setup and a currently running experiment for evaluating how physical interactions over time and between individuals affect the spread of epidemics. Our experiment involves the voluntary use of the Safe Blues Android app by participants at The University of Auckland (UoA) City Campus in New Zealand. The app spreads multiple virtual safe virus strands via Bluetooth depending on the physical proximity of the subjects. The evolution of the virtual epidemics is recorded as they spread through the population. The data is presented as a real-time (and historical) dashboard. A simulation model is applied to calibrate strand parameters. Participants' locations are not recorded, but participants are rewarded based on the duration of participation within a geofenced area, and aggregate participation numbers serve as part of the data. The 2021 experimental data is available as an open-source anonymized dataset, and once the experiment is complete, the remaining data will be made available. This paper outlines the experimental setup, software, subject-recruitment practices, ethical considerations, and dataset description. The paper also highlights current experimental results in view of the lockdown that started in New Zealand at 23:59 on August 17, 2021. The experiment was initially planned in the New Zealand environment, expected to be free of COVID and lockdowns after 2020. However, a COVID Delta strain lockdown shuffled the cards and the experiment is currently extended into 2022.

4.
Patterns (N Y) ; 2(3): 100220, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33748797

RESUMO

Viral spread is a complicated function of biological properties, the environment, preventative measures such as sanitation and masks, and the rate at which individuals come within physical proximity. It is these last two elements that governments can control through social-distancing directives. However, infection measurements are almost always delayed, making real-time estimation nearly impossible. Safe Blues is one way of addressing the problem caused by this time lag via online measurements combined with machine learning methods that exploit the relationship between counts of multiple forms of the Safe Blues strands and the progress of the actual epidemic. The Safe Blues protocols and techniques have been developed together with an experimental minimal viable product, presented as an app on Android devices with a server backend. Following initial exploration via simulation experiments, we are now preparing for a university-wide experiment of Safe Blues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA