Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(20): 4833-4836, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36053173

RESUMO

MOTIVATION: The i2b2 platform is used at major academic health institutions and research consortia for querying for electronic health data. However, a major obstacle for wider utilization of the platform is the complexity of data loading that entails a steep curve of learning the platform's complex data schemas. To address this problem, we have developed the i2b2-etl package that simplifies the data loading process, which will facilitate wider deployment and utilization of the platform. RESULTS: We have implemented i2b2-etl as a Python application that imports ontology and patient data using simplified input file schemas and provides inbuilt record number de-identification and data validation. We describe a real-world deployment of i2b2-etl for a population-management initiative at MassGeneral Brigham. AVAILABILITY AND IMPLEMENTATION: i2b2-etl is a free, open-source application implemented in Python available under the Mozilla 2 license. The application can be downloaded as compiled docker images. A live demo is available at https://i2b2clinical.org/demo-i2b2etl/ (username: demo, password: Etl@2021). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Registros Eletrônicos de Saúde , Armazenamento e Recuperação da Informação , Biologia , Bases de Dados Factuais , Humanos , Informática
2.
J Med Internet Res ; 24(5): e37931, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35476727

RESUMO

BACKGROUND: Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted for unrelated indications with an incidentally positive test could be misclassified as a COVID-19 hospitalization. Electronic health record (EHR)-based studies have been unable to distinguish between a hospitalization specifically for COVID-19 versus an incidental SARS-CoV-2 hospitalization. Although the need to improve classification of COVID-19 versus incidental SARS-CoV-2 is well understood, the magnitude of the problems has only been characterized in small, single-center studies. Furthermore, there have been no peer-reviewed studies evaluating methods for improving classification. OBJECTIVE: The aims of this study are to, first, quantify the frequency of incidental hospitalizations over the first 15 months of the pandemic in multiple hospital systems in the United States and, second, to apply electronic phenotyping techniques to automatically improve COVID-19 hospitalization classification. METHODS: From a retrospective EHR-based cohort in 4 US health care systems in Massachusetts, Pennsylvania, and Illinois, a random sample of 1123 SARS-CoV-2 PCR-positive patients hospitalized from March 2020 to August 2021 was manually chart-reviewed and classified as "admitted with COVID-19" (incidental) versus specifically admitted for COVID-19 ("for COVID-19"). EHR-based phenotyping was used to find feature sets to filter out incidental admissions. RESULTS: EHR-based phenotyped feature sets filtered out incidental admissions, which occurred in an average of 26% of hospitalizations (although this varied widely over time, from 0% to 75%). The top site-specific feature sets had 79%-99% specificity with 62%-75% sensitivity, while the best-performing across-site feature sets had 71%-94% specificity with 69%-81% sensitivity. CONCLUSIONS: A large proportion of SARS-CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based phenotypes differentiated admissions, which is important to assure accurate public health reporting and research.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Registros Eletrônicos de Saúde , Hospitalização , Humanos , Estudos Retrospectivos
3.
Bioinformatics ; 36(10): 3200-3206, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049335

RESUMO

MOTIVATION: Expert-labeled data are essential to train phenotyping algorithms for cohort identification. However expert labeling is time and labor intensive, and the costs remain prohibitive for scaling phenotyping to wider use-cases. RESULTS: We present an approach referred to as polar labeling (PL), to create silver standard for training machine learning (ML) for disease classification. We test the hypothesis that ML models trained on the silver standard created by applying PL on unlabeled patient records, are comparable in performance to the ML models trained on gold standard, created by clinical experts through manual review of patient records. We perform experimental validation using health records of 38 023 patients spanning six diseases. Our results demonstrate the superior performance of the proposed approach. AVAILABILITY AND IMPLEMENTATION: We provide a Python implementation of the algorithm and the Python code developed for this study on Github. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Aprendizado de Máquina , Cor , Humanos
4.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600347

RESUMO

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Assuntos
COVID-19/epidemiologia , Coleta de Dados/métodos , Registros Eletrônicos de Saúde , Coleta de Dados/normas , Humanos , Revisão da Pesquisa por Pares/normas , Editoração/normas , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação
5.
BMC Med Inform Decis Mak ; 18(1): 66, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012140

RESUMO

BACKGROUND: Informatics for Integrating Biology and the Bedside (i2b2) is an open source clinical data analytics platform used at over 200 healthcare institutions for querying patient data. The i2b2 platform has several components with numerous dependencies and configuration parameters, which renders the task of installing or upgrading i2b2 a challenging one. Even with the availability of extensive documentation and tutorials, new users often require several weeks to correctly install a functional i2b2 platform. The goal of this work is to simplify the installation and upgrade process for i2b2. Specifically, we have containerized the core components of the platform, and evaluated the containers for ease of installation. RESULTS: We developed three Docker container images: WildFly, database, and web, to encapsulate the three major deployment components of i2b2. These containers isolate the core functionalities of the i2b2 platform, and work in unison to provide its functionalities. Our evaluations indicate that i2b2 containers function successfully on the Linux platform. Our results demonstrate that the containerized components work out-of-the-box, with minimal configuration. CONCLUSIONS: Containerization offers the potential to package the i2b2 platform components into standalone executable packages that are agnostic to the underlying host operating system. By releasing i2b2 as a Docker container, we anticipate that users will be able to create a working i2b2 hive installation without the need to download, compile, and configure individual components that constitute the i2b2 cells, thus making this platform accessible to a greater number of institutions.


Assuntos
Pesquisa Biomédica , Aplicações da Informática Médica , Computação em Informática Médica , Sistemas Automatizados de Assistência Junto ao Leito , Humanos
6.
J Med Syst ; 42(11): 209, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30255347

RESUMO

Left ventricular ejection fraction (LVEF) is an important prognostic indicator of cardiovascular outcomes. It is used clinically to determine the indication for several therapeutic interventions. LVEF is most commonly derived using in-line tools and some manual assessment by cardiologists from standardized echocardiographic views. LVEF is typically documented in free-text reports, and variation in LVEF documentation pose a challenge for the extraction and utilization of LVEF in computer-based clinical workflows. To address this problem, we developed a computerized algorithm to extract LVEF from echocardiography reports for the identification of patients having heart failure with reduced ejection fraction (HFrEF) for therapeutic intervention at a large healthcare system. We processed echocardiogram reports for 57,158 patients with coded diagnosis of Heart Failure that visited the healthcare system over a two-year period. Our algorithm identified a total of 3910 patients with reduced ejection fraction. Of the 46,634 echocardiography reports processed, 97% included a mention of LVEF. Of these reports, 85% contained numerical ejection fraction values, 9% contained ranges, and the remaining 6% contained qualitative descriptions. Overall, 18% of extracted numerical LVEFs were ≤ 40%. Furthermore, manual validation for a sample of 339 reports yielded an accuracy of 1.0. Our study demonstrates that a regular expression-based approach can accurately extract LVEF from echocardiograms, and is useful for delineating heart-failure patients with reduced ejection fraction.


Assuntos
Ecocardiografia , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico , Função Ventricular Esquerda , Algoritmos , Humanos , Prognóstico
7.
BMC Med Inform Decis Mak ; 17(1): 155, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191207

RESUMO

BACKGROUND: The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived metadata for developing machine learning downstream applications. To classify the medical subdomain of a note accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed medical subdomain classifiers based on the content of the note. METHODS: We constructed the pipeline using the clinical NLP system, clinical Text Analysis and Knowledge Extraction System (cTAKES), the Unified Medical Language System (UMLS) Metathesaurus, Semantic Network, and learning algorithms to extract features from two datasets - clinical notes from Integrating Data for Analysis, Anonymization, and Sharing (iDASH) data repository (n = 431) and Massachusetts General Hospital (MGH) (n = 91,237), and built medical subdomain classifiers with different combinations of data representation methods and supervised learning algorithms. We evaluated the performance of classifiers and their portability across the two datasets. RESULTS: The convolutional recurrent neural network with neural word embeddings trained-medical subdomain classifier yielded the best performance measurement on iDASH and MGH datasets with area under receiver operating characteristic curve (AUC) of 0.975 and 0.991, and F1 scores of 0.845 and 0.870, respectively. Considering better clinical interpretability, linear support vector machine-trained medical subdomain classifier using hybrid bag-of-words and clinically relevant UMLS concepts as the feature representation, with term frequency-inverse document frequency (tf-idf)-weighting, outperformed other shallow learning classifiers on iDASH and MGH datasets with AUC of 0.957 and 0.964, and F1 scores of 0.932 and 0.934 respectively. We trained classifiers on one dataset, applied to the other dataset and yielded the threshold of F1 score of 0.7 in classifiers for half of the medical subdomains we studied. CONCLUSION: Our study shows that a supervised learning-based NLP approach is useful to develop medical subdomain classifiers. The deep learning algorithm with distributed word representation yields better performance yet shallow learning algorithms with the word and concept representation achieves comparable performance with better clinical interpretability. Portable classifiers may also be used across datasets from different institutions.


Assuntos
Tomada de Decisão Clínica , Aprendizado de Máquina , Prontuários Médicos , Processamento de Linguagem Natural , Unified Medical Language System , Humanos
8.
BMC Bioinformatics ; 16: 185, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26047637

RESUMO

BACKGROUND: Advances in the next generation sequencing technology has accelerated the pace of individualized medicine (IM), which aims to incorporate genetic/genomic information into medicine. One immediate need in interpreting sequencing data is the assembly of information about genetic variants and their corresponding associations with other entities (e.g., diseases or medications). Even with dedicated effort to capture such information in biological databases, much of this information remains 'locked' in the unstructured text of biomedical publications. There is a substantial lag between the publication and the subsequent abstraction of such information into databases. Multiple text mining systems have been developed, but most of them focus on the sentence level association extraction with performance evaluation based on gold standard text annotations specifically prepared for text mining systems. RESULTS: We developed and evaluated a text mining system, MutD, which extracts protein mutation-disease associations from MEDLINE abstracts by incorporating discourse level analysis, using a benchmark data set extracted from curated database records. MutD achieves an F-measure of 64.3% for reconstructing protein mutation disease associations in curated database records. Discourse level analysis component of MutD contributed to a gain of more than 10% in F-measure when compared against the sentence level association extraction. Our error analysis indicates that 23 of the 64 precision errors are true associations that were not captured by database curators and 68 of the 113 recall errors are caused by the absence of associated disease entities in the abstract. After adjusting for the defects in the curated database, the revised F-measure of MutD in association detection reaches 81.5%. CONCLUSIONS: Our quantitative analysis reveals that MutD can effectively extract protein mutation disease associations when benchmarking based on curated database records. The analysis also demonstrates that incorporating discourse level analysis significantly improved the performance of extracting the protein-mutation-disease association. Future work includes the extension of MutD for full text articles.


Assuntos
Algoritmos , Biologia Computacional/métodos , Mineração de Dados/métodos , Doença/genética , Medical Subject Headings , Mutação/genética , Publicações , Bases de Dados Factuais , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Processamento de Linguagem Natural
9.
Healthc (Amst) ; 12(2): 100738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531228

RESUMO

The COVID-19 pandemic generated tremendous interest in using real world data (RWD). Many consortia across the public and private sectors formed in 2020 with the goal of rapidly producing high-quality evidence from RWD to guide medical decision-making, public health priorities, and more. Experiences were gathered from five large consortia on rapid multi-institutional evidence generation during the COVID-19 pandemic. Insights have been compiled across five dimensions: consortium composition, governance structure and alignment of priorities, data sharing, data analysis, and evidence dissemination. The purpose of this piece is to offer guidance on building large-scale multi-institutional RWD analysis pipelines for future public health issues. The composition of each consortium was largely influenced by existing collaborations. A central set of priorities for evidence generation guided each consortium, however different approaches to governance emerged. Challenges surrounding limited access to clinical data due to various contributors were overcome in unique ways. While all consortia used different methods to construct and analyze patient cohorts ranging from centralized to federated approaches, all proved effective for generating meaningful real-world evidence. Actionable recommendations for clinical practice and public health agencies were made from translating insights from consortium analyses. Each consortium was successful in rapidly answering questions about COVID-19 diagnosis and treatment despite all taking slightly different approaches to data sharing and analysis. Leveraging RWD, leveraged in a manner that applies scientific rigor and transparency, can complement higher-level evidence and serve as an important adjunct to clinical trials to quickly guide policy and critical care, especially for a pandemic response.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Pandemias , Disseminação de Informação/métodos , SARS-CoV-2
10.
medRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370719

RESUMO

Background: Subject screening is a key aspect of all clinical trials; however, traditionally, it is a labor-intensive and error-prone task, demanding significant time and resources. With the advent of large language models (LLMs) and related technologies, a paradigm shift in natural language processing capabilities offers a promising avenue for increasing both quality and efficiency of screening efforts. This study aimed to test the Retrieval-Augmented Generation (RAG) process enabled Generative Pretrained Transformer Version 4 (GPT-4) to accurately identify and report on inclusion and exclusion criteria for a clinical trial. Methods: The Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF) trial aims to recruit patients with symptomatic heart failure. As part of the screening process, a list of potentially eligible patients is created through an electronic health record (EHR) query. Currently, structured data in the EHR can only be used to determine 5 out of 6 inclusion and 5 out of 17 exclusion criteria. Trained, but non-licensed, study staff complete manual chart review to determine patient eligibility and record their assessment of the inclusion and exclusion criteria. We obtained the structured assessments completed by the study staff and clinical notes for the past two years and developed a workflow of clinical note-based question answering system powered by RAG architecture and GPT-4 that we named RECTIFIER (RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review). We used notes from 100 patients as a development dataset, 282 patients as a validation dataset, and 1894 patients as a test set. An expert clinician completed a blinded review of patients' charts to answer the eligibility questions and determine the "gold standard" answers. We calculated the sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) for each question and screening method. We also performed bootstrapping to calculate the confidence intervals for each statistic. Results: Both RECTIFIER and study staff answers closely aligned with the expert clinician answers across criteria with accuracy ranging between 97.9% and 100% (MCC 0.837 and 1) for RECTIFIER and 91.7% and 100% (MCC 0.644 and 1) for study staff. RECTIFIER performed better than study staff to determine the inclusion criteria of "symptomatic heart failure" with an accuracy of 97.9% vs 91.7% and an MCC of 0.924 vs 0.721, respectively. Overall, the sensitivity and specificity of determining eligibility for the RECTIFIER was 92.3% (CI) and 93.9% (CI), and study staff was 90.1% (CI) and 83.6% (CI), respectively. Conclusion: GPT-4 based solutions have the potential to improve efficiency and reduce costs in clinical trial screening. When incorporating new tools such as RECTIFIER, it is important to consider the potential hazards of automating the screening process and set up appropriate mitigation strategies such as final clinician review before patient engagement.

11.
Proteome Sci ; 11(Suppl 1): S21, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24565338

RESUMO

BACKGROUND: Many computational approaches have been developed to detect protein complexes from protein-protein interaction (PPI) networks. However, these PPI networks are always built from high-throughput experiments. The presence of unreliable interactions in PPI network makes this task very challenging. METHODS: In this study, we proposed a Genetic-Algorithm Fuzzy Naïve Bayes (GAFNB) filter to classify the protein complexes from candidate subgraphs. It takes unreliability into consideration and tackles the presence of unreliable interactions in protein complex. We first got candidate protein complexes through existed popular methods. Each candidate protein complex is represented by 29 graph features and 266 biological property based features. GAFNB model is then applied to classify the candidate complexes into positive or negative. RESULTS: Our evaluation indicates that the protein complex identification algorithms using the GAFNB model filtering outperform original ones. For evaluation of GAFNB model, we also compared the performance of GAFNB with Naïve Bayes (NB). Results show that GAFNB performed better than NB. It indicates that a fuzzy model is more suitable when unreliability is present. CONCLUSIONS: We conclude that filtering candidate protein complexes with GAFNB model can improve the effectiveness of protein complex identification. It is necessary to consider the unreliability in this task.

12.
Ann Allergy Asthma Immunol ; 111(5): 364-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24125142

RESUMO

BACKGROUND: A significant proportion of children with asthma have delayed diagnosis of asthma by health care providers. Manual chart review according to established criteria is more accurate than directly using diagnosis codes, which tend to under-identify asthmatics, but chart reviews are more costly and less timely. OBJECTIVE: To evaluate the accuracy of a computational approach to asthma ascertainment, characterizing its utility and feasibility toward large-scale deployment in electronic medical records. METHODS: A natural language processing (NLP) system was developed for extracting predetermined criteria for asthma from unstructured text in electronic medical records and then inferring asthma status based on these criteria. Using manual chart reviews as a gold standard, asthma status (yes vs no) and identification date (first date of a "yes" asthma status) were determined by the NLP system. RESULTS: Patients were a group of children (n = 112, 84% Caucasian, 49% girls) younger than 4 years (mean 2.0 years, standard deviation 1.03 years) who participated in previous studies. The NLP approach to asthma ascertainment showed sensitivity, specificity, positive predictive value, negative predictive value, and median delay in diagnosis of 84.6%, 96.5%, 88.0%, 95.4%, and 0 months, respectively; this compared favorably with diagnosis codes, at 30.8%, 93.2%, 57.1%, 82.2%, and 2.3 months, respectively. CONCLUSION: Automated asthma ascertainment from electronic medical records using NLP is feasible and more accurate than traditional approaches such as diagnosis codes. Considering the difficulty of labor-intensive manual record review, NLP approaches for asthma ascertainment should be considered for improving clinical care and research, especially in large-scale efforts.


Assuntos
Asma/diagnóstico , Processamento Eletrônico de Dados , Sistemas Computadorizados de Registros Médicos , Processamento de Linguagem Natural , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino
13.
PLOS Digit Health ; 2(7): e0000301, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37490472

RESUMO

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis. In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection. We implemented distributed representation learning powered by the Machine Learning for modeling Health Outcomes (MLHO) to identify novel EHR features that could suggest PASC symptoms outside of typical diagnosis codes. MLHO applies an entropy-based feature selection and boosting algorithms for representation mining. These improved definitions were then used for estimating PASC among hospitalized patients. 30,422 hospitalized patients were diagnosed with COVID-19 across three healthcare systems between March 13, 2020 and February 28, 2021. The mean age of the population was 62.3 years (SD, 21.0 years) and 15,124 (49.7%) were female. We implemented the distributed representation learning technique to augment PASC definitions. These definitions were found to have positive predictive values of 0.73, 0.74, and 0.91 for dyspnea, fatigue, and joint pain, respectively. We estimated that 25 percent (CI 95%: 6-48), 11 percent (CI 95%: 6-15), and 13 percent (CI 95%: 8-17) of hospitalized COVID-19 patients will have dyspnea, fatigue, and joint pain, respectively, 3 months or longer after a COVID-19 diagnosis. We present a validated framework for screening and identifying patients with PASC in the EHR and then use the tool to estimate its prevalence among hospitalized COVID-19 patients.

14.
JAMA Cardiol ; 8(1): 12-21, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350612

RESUMO

Importance: Blood pressure (BP) and cholesterol control remain challenging. Remote care can deliver more effective care outside of traditional clinician-patient settings but scaling and ensuring access to care among diverse populations remains elusive. Objective: To implement and evaluate a remote hypertension and cholesterol management program across a diverse health care network. Design, Setting, and Participants: Between January 2018 and July 2021, 20 454 patients in a large integrated health network were screened; 18 444 were approached, and 10 803 were enrolled in a comprehensive remote hypertension and cholesterol program (3658 patients with hypertension, 8103 patients with cholesterol, and 958 patients with both). A total of 1266 patients requested education only without medication titration. Enrolled patients received education, home BP device integration, and medication titration. Nonlicensed navigators and pharmacists, supported by cardiovascular clinicians, coordinated care using standardized algorithms, task management and automation software, and omnichannel communication. BP and laboratory test results were actively monitored. Main Outcomes and Measures: Changes in BP and low-density lipoprotein cholesterol (LDL-C). Results: The mean (SD) age among 10 803 patients was 65 (11.4) years; 6009 participants (56%) were female; 1321 (12%) identified as Black, 1190 (11%) as Hispanic, 7758 (72%) as White, and 1727 (16%) as another or multiple races (including American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, unknown, other, and declined to respond; consolidated owing to small numbers); and 142 (11%) reported a preferred language other than English. A total of 424 482 BP readings and 139 263 laboratory reports were collected. In the hypertension program, the mean (SD) office BP prior to enrollment was 150/83 (18/10) mm Hg, and the mean (SD) home BP was 145/83 (20/12) mm Hg. For those engaged in remote medication management, the mean (SD) clinic BP 6 and 12 months after enrollment decreased by 8.7/3.8 (21.4/12.4) and 9.7/5.2 (22.2/12.6) mm Hg, respectively. In the education-only cohort, BP changed by a mean (SD) -1.5/-0.7 (23.0/11.1) and by +0.2/-1.9 (30.3/11.2) mm Hg, respectively (P < .001 for between cohort difference). In the lipids program, patients in remote medication management experienced a reduction in LDL-C by a mean (SD) 35.4 (43.1) and 37.5 (43.9) mg/dL at 6 and 12 months, respectively, while the education-only cohort experienced a mean (SD) reduction in LDL-C of 9.3 (34.3) and 10.2 (35.5) mg/dL at 6 and 12 months, respectively (P < .001). Similar rates of enrollment and reductions in BP and lipids were observed across different racial, ethnic, and primary language groups. Conclusions and Relevance: The results of this study indicate that a standardized remote BP and cholesterol management program may help optimize guideline-directed therapy at scale, reduce cardiovascular risk, and minimize the need for in-person visits among diverse populations.


Assuntos
Hipercolesterolemia , Hipertensão , Humanos , Feminino , Idoso , Masculino , LDL-Colesterol/sangue , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Pressão Sanguínea , Atenção à Saúde
15.
EClinicalMedicine ; 64: 102210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745021

RESUMO

Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning. Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424 individuals with follow-up data and developed a distributed representation learning process for providing augmented definitions for PASC sub-phenotypes. Findings: Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence of 5.45% and 4.53%, respectively. Interpretation: We provided a scalable framework to every participating healthcare system for estimating PASC sub-phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-phenotypes across the different systems. Funding: Authors are supported by National Institute of Allergy and Infectious Diseases, National Institute on Aging, National Center for Advancing Translational Sciences, National Medical Research Council, National Institute of Neurological Disorders and Stroke, European Union, National Institutes of Health, National Center for Advancing Translational Sciences.

16.
J Am Med Inform Assoc ; 29(8): 1334-1341, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35511151

RESUMO

OBJECTIVE: The increasing translation of artificial intelligence (AI)/machine learning (ML) models into clinical practice brings an increased risk of direct harm from modeling bias; however, bias remains incompletely measured in many medical AI applications. This article aims to provide a framework for objective evaluation of medical AI from multiple aspects, focusing on binary classification models. MATERIALS AND METHODS: Using data from over 56 000 Mass General Brigham (MGB) patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluate unrecognized bias in 4 AI models developed during the early months of the pandemic in Boston, Massachusetts that predict risks of hospital admission, ICU admission, mechanical ventilation, and death after a SARS-CoV-2 infection purely based on their pre-infection longitudinal medical records. Models were evaluated both retrospectively and prospectively using model-level metrics of discrimination, accuracy, and reliability, and a novel individual-level metric for error. RESULTS: We found inconsistent instances of model-level bias in the prediction models. From an individual-level aspect, however, we found most all models performing with slightly higher error rates for older patients. DISCUSSION: While a model can be biased against certain protected groups (ie, perform worse) in certain tasks, it can be at the same time biased towards another protected group (ie, perform better). As such, current bias evaluation studies may lack a full depiction of the variable effects of a model on its subpopulations. CONCLUSION: Only a holistic evaluation, a diligent search for unrecognized bias, can provide enough information for an unbiased judgment of AI bias that can invigorate follow-up investigations on identifying the underlying roots of bias and ultimately make a change.


Assuntos
COVID-19 , Inteligência Artificial , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2
17.
J Am Heart Assoc ; 11(15): e026014, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35904194

RESUMO

Background Models predicting atrial fibrillation (AF) risk, such as Cohorts for Heart and Aging Research in Genomic Epidemiology AF (CHARGE-AF), have not performed as well in electronic health records. Natural language processing (NLP) may improve models by using narrative electronic health record text. Methods and Results From a primary care network, we included patients aged ≥65 years with visits between 2003 and 2013 in development (n=32 960) and internal validation cohorts (n=13 992). An external validation cohort from a separate network from 2015 to 2020 included 39 051 patients. Model features were defined using electronic health record codified data and narrative data with NLP. We developed 2 models to predict 5-year AF incidence using (1) codified+NLP data and (2) codified data only and evaluated model performance. The analysis included 2839 incident AF cases in the development cohort and 1057 and 2226 cases in internal and external validation cohorts, respectively. The C-statistic was greater (P<0.001) in codified+NLP model (0.744 [95% CI, 0.735-0.753]) compared with codified-only (0.730 [95% CI, 0.720-0.739]) in the development cohort. In internal validation, the C-statistic of codified+NLP was modestly higher (0.735 [95% CI, 0.720-0.749]) compared with codified-only (0.729 [95% CI, 0.715-0.744]; P=0.06) and CHARGE-AF (0.717 [95% CI, 0.703-0.731]; P=0.002). Codified+NLP and codified-only were well calibrated, whereas CHARGE-AF underestimated AF risk. In external validation, the C-statistic of codified+NLP (0.750 [95% CI, 0.740-0.760]) remained higher (P<0.001) than codified-only (0.738 [95% CI, 0.727-0.748]) and CHARGE-AF (0.735 [95% CI, 0.725-0.746]). Conclusions Estimation of 5-year risk of AF can be modestly improved using NLP to incorporate narrative electronic health record data.


Assuntos
Fibrilação Atrial , Processamento de Linguagem Natural , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Estudos de Coortes , Registros Eletrônicos de Saúde , Humanos , Incidência , Medição de Risco/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-35874460

RESUMO

Analysis of health data typically requires development of queries using structured query language (SQL) by a data-analyst. As the SQL queries are manually created, they are prone to errors. In addition, accurate implementation of the queries depends on effective communication with clinical experts, that further makes the analysis error prone. As a potential resolution, we explore an alternative approach wherein a graphical interface that automatically generates the SQL queries is used to perform the analysis. The latter allows clinical experts to directly perform complex queries on the data, despite their unfamiliarity with SQL syntax. The interface provides an intuitive understanding of the query logic which makes the analysis transparent and comprehensible to the clinical study-staff, thereby enhancing the transparency and validity of the analysis. This study demonstrates the feasibility of using a user-friendly interface that automatically generate SQL for analysis of health data. It outlines challenges that will be useful for designing user-friendly tools to improve transparency and reproducibility of data analysis.

19.
medRxiv ; 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35350202

RESUMO

Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted for unrelated indications with an incidentally positive test could be misclassified as a COVID-19 hospitalization. EHR-based studies have been unable to distinguish between a hospitalization specifically for COVID-19 versus an incidental SARS-CoV-2 hospitalization. From a retrospective EHR-based cohort in four US healthcare systems, a random sample of 1,123 SARS-CoV-2 PCR-positive patients hospitalized between 3/2020â€"8/2021 was manually chart-reviewed and classified as admitted-with-COVID-19 (incidental) vs. specifically admitted for COVID-19 (for-COVID-19). EHR-based phenotyped feature sets filtered out incidental admissions, which occurred in 26%. The top site-specific feature sets had 79-99% specificity with 62-75% sensitivity, while the best performing across-site feature set had 71-94% specificity with 69-81% sensitivity. A large proportion of SARS-CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based phenotypes differentiated admissions, which is important to assure accurate public health reporting and research.

20.
BMJ Open ; 12(6): e057725, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738646

RESUMO

OBJECTIVE: To assess changes in international mortality rates and laboratory recovery rates during hospitalisation for patients hospitalised with SARS-CoV-2 between the first wave (1 March to 30 June 2020) and the second wave (1 July 2020 to 31 January 2021) of the COVID-19 pandemic. DESIGN, SETTING AND PARTICIPANTS: This is a retrospective cohort study of 83 178 hospitalised patients admitted between 7 days before or 14 days after PCR-confirmed SARS-CoV-2 infection within the Consortium for Clinical Characterization of COVID-19 by Electronic Health Record, an international multihealthcare system collaborative of 288 hospitals in the USA and Europe. The laboratory recovery rates and mortality rates over time were compared between the two waves of the pandemic. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was all-cause mortality rate within 28 days after hospitalisation stratified by predicted low, medium and high mortality risk at baseline. The secondary outcome was the average rate of change in laboratory values during the first week of hospitalisation. RESULTS: Baseline Charlson Comorbidity Index and laboratory values at admission were not significantly different between the first and second waves. The improvement in laboratory values over time was faster in the second wave compared with the first. The average C reactive protein rate of change was -4.72 mg/dL vs -4.14 mg/dL per day (p=0.05). The mortality rates within each risk category significantly decreased over time, with the most substantial decrease in the high-risk group (42.3% in March-April 2020 vs 30.8% in November 2020 to January 2021, p<0.001) and a moderate decrease in the intermediate-risk group (21.5% in March-April 2020 vs 14.3% in November 2020 to January 2021, p<0.001). CONCLUSIONS: Admission profiles of patients hospitalised with SARS-CoV-2 infection did not differ greatly between the first and second waves of the pandemic, but there were notable differences in laboratory improvement rates during hospitalisation. Mortality risks among patients with similar risk profiles decreased over the course of the pandemic. The improvement in laboratory values and mortality risk was consistent across multiple countries.


Assuntos
COVID-19 , Pandemias , Hospitalização , Humanos , Estudos Retrospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA