Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Indian J Microbiol ; 55(2): 151-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805901

RESUMO

Group-wise diversity of sediment methylotrophs of Chilika lake (Lat. 19°28'-19°54'N; Long. 85°06'-85°35'E) Odisha, India at various identified sites was studied. Both the culturable and unculturable (metagenome) methylotrophs were investigated in the lake sediments employing both mxaF and 16S rRNA genes as markers. ARDRA profiling, 16S rRNA gene sequencing, PAGE profiling of HaeIII, EcoRI restricted mxaF gene and the mxaF gene sequences using culture-dependent approach revealed the relatedness of α-proteobacteria and Methylobacterium, Hyphomicrobium and Ancyclobacter sp. The total viable counts of the culturable aerobic methylotrophs were relatively higher in sediments near the sea mouth (S3; Panaspada), also demonstrated relatively high salinity (0.1 M NaCl) tolerance. Metagenomic DNA from the sediments, amplified using GC clamp mxaF primers and resolved through DGGE, revealed the diversity within the unculturable methylotrophic bacterium Methylobacterium organophilum, Ancyclobacter aquaticus, Burkholderiales and Hyphomicrobium sp. Culture-independent analyses revealed that up to 90 % of the methylotrophs were unculturable. The study enhances the general understandings of the metagenomic methylotrophs from such a special ecological niche.

2.
Front Plant Sci ; 14: 1249600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780501

RESUMO

Microbes enhance crop resilience to abiotic stresses, aiding agricultural sustainability amid rising global land salinity. While microbes have proven effective via seed priming, soil amendments, and foliar sprays in diverse crops, their mechanisms remain less explored. This study explores the utilization of ACC deaminase-producing Nocardioides sp. to enhance wheat growth in saline environments and the molecular mechanisms underlying Nocardioides sp.-mediated salinity tolerance in wheat. The Nocardioides sp. inoculated seeds were grown under four salinity regimes viz., 0 dS m-1, 5 dS m-1, 10 dS m-1, and 15 dS m-1, and vegetative growth parameters including shoot-root length, germination percentage, seedling vigor index, total biomass, and shoot-root ratio were recorded. The Nocardioides inoculated wheat plants performed well under saline conditions compared to uninoculated plants and exhibited lower shoot:root (S:R) ratio (1.52 ± 0.14 for treated plants against 1.84 ± 0.08 for untreated plants) at salinity level of 15 dS m-1 and also showed improved biomass at 5 dS m-1 and 10 dS m-1. Furthermore, the inoculated plants also exhibited higher protein content viz., 22.13 mg g-1, 22.10 mg g-1, 22.63 mg g-1, and 23.62 mg g-1 fresh weight, respectively, at 0 dS m-1, 5 dS m-1, 10 dS m-1, and 15 dS m-1. The mechanisms were studied in terms of catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase activity, free radical scavenging potential, in-situ localization of H2O2 and superoxide ions, and DNA damage. The inoculated seedlings maintained higher enzymatic and non-enzymatic antioxidant potential, which corroborated with reduced H2O2 and superoxide localization within the tissue. The gene expression profiles of 18 stress-related genes involving abscisic acid signaling, salt overly sensitive (SOS response), ion transporters, stress-related transcription factors, and antioxidant enzymes were also analyzed. Higher levels of stress-responsive gene transcripts, for instance, TaABARE (~+7- and +10-fold at 10 dS m-1 and 15 dS m-1); TaHAk1 and hkt1 (~+4- and +8-fold at 15 dS m-1); antioxidant enzymes CAT, MnSOD, POD, APX, GPX, and GR (~+4, +3, +5, +4, +9, and +8 folds and), indicated actively elevated combat mechanisms in inoculated seedlings. Our findings emphasize Nocardioides sp.-mediated wheat salinity tolerance via ABA-dependent cascade and salt-responsive ion transport system. This urges additional study of methylotrophic microbes to enhance crop abiotic stress resilience.

3.
Plants (Basel) ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297769

RESUMO

Protected cultivation is gaining momentum in (semi) arid regions to ameliorate the adverse environmental impacts on vegetable crops, besides ensuring high resource use efficiency in resource-limiting environments. Among the less techno-intensive protected cultivation structures, naturally ventilated polyhouses (NVP), insect-proof net houses (IPN) and shade net houses (SNH) are commercial structures in India. With the aim to find the best-protected structure, together with optimum irrigation level, for high yield and water productivity of the tomato crop, the most popular crop in hot arid regions, we evaluated tomato performance in low-tech protected structures (NVP, IPN and SNH) in interaction with three irrigation levels (100, 80 and 60% of crop evapotranspiration, ETc) during spring-summer of 2019 and 2020. The NVP was found superior to both the net house structures (IPN and SNH) for different performance indicators of tomatoes under investigation. The components of plant growth (leaf and stem dry mass) and fruit yield (fruit size, weight, yield), as well as fruit quality (total soluble solids, fruit dry matter and lycopene content) were higher in NVP, regardless of irrigation level. The yield as well as water productivity were significantly higher in NVP at 100% ETc. However, there was no statistical variation for water productivity between NVP and IPN. Microclimate parameters (temperature, relative humidity and photosynthetic active radiation) were markedly more congenial for tomato cultivation in NVP followed by IPN in relation to SNH. Consequently, plants' physiological functioning with higher leaf relative water content (RWC) and lower leaf water potential concomitantly with better photosynthetic efficiency (chlorophyll fluorescence, Fv/Fm), was in NVP and IPN. Most growth and yield attributes were depressed with the decrease in water application rates; hence, deficit irrigation in these low-tech protected structures is not feasible. For tomato cultivation in resource-scarce arid regions, the combination of the normal rate of irrigation (100% ETc) and NVP was optimal for gaining high yield as well as water productivity as compared to net houses.

4.
Sci Rep ; 10(1): 17883, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087779

RESUMO

Climate change impact has disturbed the rainfall pattern worsening the problems of water availability in the aquatic ecosystem of India and other parts of the world. Arsenic pollution, mainly through excessive use of groundwater and other anthropogenic activities, is aggravating in many parts of the world, particularly in South Asia. We evaluated the efficacy of selenium nanoparticles (Se-NPs) and riboflavin (RF) to ameliorate the adverse impacts of elevated temperature and arsenic pollution on growth, anti-oxidative status and immuno-modulation in Pangasianodon hypophthalmus. Se-NPs were synthesized using fish gill employing green synthesis method. Four diets i.e., Se-NPs (0 mg kg-1) + RF (0 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (5 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (10 mg kg-1); and Se-NPs (0.5 mg kg-1) + RF (15 mg kg-1) were given in triplicate in a completely randomized block design. The fish were treated in arsenic (1/10th of LC50, 2.68 mg L-1) and high temperature (34 °C). Supplementation of the Se-NPs and RF in the diets significantly (p < 0.01) enhanced growth performance (weight gain, feed efficiency ratio, protein efficiency ratio, and specific growth rate), anti-oxidative status and immunity of the fish. Nitroblue tetrazolium (NBT), total immunoglobulin, myeloperoxidase and globulin enhanced (p < 0.01) with supplementation (Se-NPs + RF) whereas, albumin and albumin globulin (A:G) ratio (p < 0.01) reduced. Stress biomarkers such as lipid peroxidation in the liver, gill and kidney, blood glucose, heat shock protein 70 in gill and liver as well as serum cortisol reduced (p < 0.01) with supplementation of Se-NPs and RF, whereas, acetylcholine esterase and vitamin C level in both brain and muscle significantly enhanced (p < 0.01) in compared to control and stressors group (As + T) fed with control diet. The fish were treated with pathogenic bacteria after 90 days of experimental trial to observe cumulative mortality and relative survival for a week. The arsenic concentration in experimental water and bioaccumulation in fish tissues was also determined, which indicated that supplementation of Se-NPs and RF significantly reduced (p < 0.01) bioaccumulation. The study concluded that a combination of Se-NPs and RF has the potential to mitigate the stresses of high temperature and As pollution in P. hypophthalmus.


Assuntos
Antioxidantes/administração & dosagem , Arsênio/toxicidade , Resposta ao Choque Térmico/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Riboflavina/administração & dosagem , Animais , Catalase/metabolismo , Peixes-Gato , Mudança Climática , Ecossistema , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA