Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(40): 9986-9991, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224472

RESUMO

Tumor cells are hypothesized to use proteolytic enzymes to facilitate invasion. Whether circulating tumor cells (CTCs) secrete these enzymes to aid metastasis is unknown. A quantitative and high-throughput approach to assay CTC secretion is needed to address this question. We developed an integrated microfluidic system that concentrates rare cancer cells >100,000-fold from 1 mL of whole blood into ∼50,000 2-nL drops composed of assay reagents within 15 min. The system isolates CTCs by size, exchanges fluid around CTCs to remove contaminants, introduces a matrix metalloprotease (MMP) substrate, and encapsulates CTCs into microdroplets. We found CTCs from prostate cancer patients possessed above baseline levels of MMP activity (1.7- to 200-fold). Activity of CTCs was generally higher than leukocytes from the same patient (average CTC/leukocyte MMP activity ratio, 2.6 ± 1.5). Higher MMP activity of CTCs suggests active proteolytic processes that may facilitate invasion or immune evasion and be relevant phenotypic biomarkers enabling companion diagnostics for anti-MMP therapies.


Assuntos
Separação Celular , Colagenases/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células A549 , Separação Celular/instrumentação , Separação Celular/métodos , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/patologia
2.
Proc Natl Acad Sci U S A ; 110(47): 18946-51, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24158479

RESUMO

Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Diferenciação Celular/fisiologia , Neoplasias Pulmonares/diagnóstico , MicroRNAs/metabolismo , Mucosa Respiratória/citologia , Animais , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imuno-Histoquímica , Hibridização In Situ , Neoplasias Pulmonares/genética , Camundongos , MicroRNAs/genética , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/metabolismo
3.
Sci Adv ; 9(41): eade3816, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831779

RESUMO

Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Antivirais , beta Catenina/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/genética
4.
Semin Respir Crit Care Med ; 32(1): 32-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21500122

RESUMO

Lung carcinogenesis is a complex, stepwise process that involves the acquisition of genetic mutations and epigenetic changes that alter cellular processes, such as proliferation, differentiation, invasion, and metastasis. Here, we review some of the latest concepts in the pathogenesis of lung cancer and highlight the roles of inflammation, the "field of cancerization," and lung cancer stem cells in the initiation of the disease. Furthermore, we review how high throughput genomics, transcriptomics, epigenomics, and proteomics are advancing the study of lung carcinogenesis. Finally, we reflect on the potential of current in vitro and in vivo models of lung carcinogenesis to advance the field and on the areas of investigation where major breakthroughs will lead to the identification of novel chemoprevention strategies and therapies for lung cancer.


Assuntos
Genômica/métodos , Inflamação/complicações , Neoplasias Pulmonares/etiologia , Animais , Anticarcinógenos/farmacologia , Epigênese Genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Inflamação/fisiopatologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutação , Células-Tronco Neoplásicas/metabolismo , Proteômica/métodos
5.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34503075

RESUMO

CA-125, encoded by the MUC16 gene, is highly expressed in most ovarian cancer cells and thus serves as a tumor marker for monitoring disease progression or treatment response in ovarian cancer patients. However, targeting MUC16/CA-125 for ovarian cancer treatment has not been successful to date. In the current study, we performed multiple steps of high-fidelity PCR and obtained a 5 kb DNA fragment upstream of the human MUC16 gene. Reporter assays indicate that this DNA fragment possesses transactivation activity in CA-125-high cancer cells, but not in CA-125-low cancer cells, indicating that the DNA fragment contains the transactivation region that controls specific expression of the MUC16 gene in ovarian cancer cells. We further refined the promoter and found a 1040 bp fragment with similar transcriptional activity and specificity. We used this refined MUC16 promoter to replace the E1A promoter in the adenovirus type 5 genome DNA, where E1A is an essential gene for adenovirus replication. We then generated a conditionally replicative oncolytic adenovirus (CRAd) that replicates in and lyses CA-125-high cancer cells, but not CA-125-low or -negative cancer cells. In vivo studies showed that intraperitoneal virus injection prolonged the survival of NSG mice inoculated intraperitoneally (ip) with selected ovarian cancer cell lines. Furthermore, the CRAd replicates in and lyses primary ovarian cancer cells, but not normal cells, collected from ovarian cancer patients. Collectively, these data indicate that targeting MUC16 transactivation utilizing CRAd is a feasible approach for ovarian cancer treatment that warrants further investigation.

6.
Am J Transl Res ; 12(2): 409-427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194893

RESUMO

Oncogenic KRAS mutations are frequently found in non-small cell lung carcinoma (NSCLC) and cause constitutive activation of the MEK-ERK pathway. Many cancer types have been shown to overexpress PD-L1 to escape immune surveillance. FRA1 is a MEK/ERK-dependent oncogenic transcription factor and a member of the AP-1 transcriptional factor superfamily. This study assesses the hypothesis that KRAS mutation directly regulates PD-L1 expression through the MEK-ERK pathway mediated by FRA1. Premalignant human bronchial epithelial cell (HBEC) lines harboring the KRAS mutationV12, EGFR mutation, p53 knock-down, or both KRAS mutation and p53 knock-down were tested for levels of PD-L1, FRA1, and ERK activation (pERK). Our results showed that KRAS mutation alone, but not other genetic alterations, induced significantly higher expression of PD-L1 compared to its vector counterparts. The increased PD-L1 expression in the KRAS mutated cells was dramatically reduced by inhibition of ERK activation. Furthermore, the MEK-ERK pathway-dependent PD-L1 expression was markedly reduced by FRA1 silencing. Interestingly, FRA1 silencing led to inhibition of ERK activation, indicating that FRA1 plays a role in PD-L1 regulation via positive feedback of ERK activation. Correlation of PD-L1 and FRA1 mRNA expression was validated using human lung cancer specimens from The Cancer Genome Atlas (TCGA) and established NSCLC cell lines from Cancer Cell Line Encyclopedia (CCLE). FRA1 expression was significantly associated with PD-L1 expression, and high FRA1 expression was correlated with poor overall survival. Our findings suggest that oncogenic KRAS-driven PD-L1 expression is dependent on MEK-ERK and FRA1 in high risk, premalignant HBEC.

8.
Sci Rep ; 10(1): 377, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941995

RESUMO

Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1ß, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1ß exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1ß exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1ß exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Epigênese Genética , Transição Epitelial-Mesenquimal , Memória Imunológica/imunologia , Inflamação/imunologia , Interleucina-1beta/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Memória Imunológica/genética , Inflamação/genética , Interleucina-1beta/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Fenótipo , Células Tumorais Cultivadas
9.
Curr Opin Pulm Med ; 15(4): 303-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19417670

RESUMO

PURPOSE OF REVIEW: Smoking is a major risk factor for lung cancer, which is the leading cause of cancer-related deaths both in the USA and worldwide. Chronic obstructive pulmonary disease and emphysema are comorbid conditions often found in lung cancer patients. The inflammatory pathways that link chronic obstructive pulmonary disease, emphysema, and lung cancer likely involve genetic and epigenetic modulations due to chronic tissue injury and abnormal tumor immunity in susceptible hosts. RECENT FINDINGS: Chronic airway inflammation contributes to alterations in the bronchial epithelium and lung microenvironment, provoking a milieu conducive to pulmonary carcinogenesis. For example, inflammation-inducible cyclooxygenase-2 is upregulated in nonsmall cell lung cancer and also plays an important role in promoting epithelial-to-mesenchymal transition. Genetic changes in the airway epithelium of smokers may help predict or identify individuals at risk for lung cancer. Finally, radiographic findings of emphysema have been established as independent risk factors for lung cancer. SUMMARY: The relationships between inflammation, airflow obstruction, and lung cancer are complex. Deregulated inflammation is complicit in the pathogenesis of chronic obstructive pulmonary disease and lung cancer, but the overlap of signaling events is not yet fully understood. Tobacco exposure is an important risk factor that confers long-term risk of lung disease. Diagnostic sensitivity of detecting lung cancer may improve with the utilization of genetic profiling in combination with pathologic evaluation of airway epithelium. Additional research is required to understand the role of epithelial-to-mesenchymal transition in chronic inflammatory lung diseases and lung carcinogenesis.


Assuntos
Neoplasias Pulmonares/epidemiologia , Pneumonia/complicações , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Crônica , Predisposição Genética para Doença/genética , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Fatores de Risco , Fumar/efeitos adversos
10.
Cancer Res ; 79(19): 5022-5033, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142513

RESUMO

Epithelial cells in the field of lung injury can give rise to distinct premalignant lesions that may bear unique genetic aberrations. A subset of these lesions may escape immune surveillance and progress to invasive cancer; however, the mutational landscape that may predict progression has not been determined. Knowledge of premalignant lesion composition and the associated microenvironment is critical for understanding tumorigenesis and the development of effective preventive and interception strategies. To identify somatic mutations and the extent of immune cell infiltration in adenomatous premalignancy and associated lung adenocarcinomas, we sequenced exomes from 41 lung cancer resection specimens, including 89 premalignant atypical adenomatous hyperplasia lesions, 15 adenocarcinomas in situ, and 55 invasive adenocarcinomas and their adjacent normal lung tissues. We defined nonsynonymous somatic mutations occurring in both premalignancy and the associated tumor as progression-associated mutations whose predicted neoantigens were highly correlated with infiltration of CD8+ and CD4+ T cells as well as upregulation of PD-L1 in premalignant lesions, suggesting the presence of an adaptive immune response to these neoantigens. Each patient had a unique repertoire of somatic mutations and associated neoantigens. Collectively, these results provide evidence for mutational heterogeneity, pathway dysregulation, and immune recognition in pulmonary premalignancy.Significance: These findings identify progression-associated somatic mutations, oncogenic pathways, and association between the mutational landscape and adaptive immune responses in adenomatous premalignancy.See related commentary by Merrick, p. 4811.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias Pulmonares , Lesões Pré-Cancerosas , Genômica , Humanos , Microambiente Tumoral
11.
Cancer Res ; 66(6): 2923-7, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16540639

RESUMO

Cyclooxygenase-2 (COX-2) expression in epithelial tumors is frequently associated with a poor prognosis. In a murine model of metastatic breast cancer, we showed that COX-2 inhibition is associated with decreased metastatic capacity. The COX-2 product, prostaglandin E(2) (PGE(2)), acts through a family of G protein-coupled receptors designated EP1-4 that mediate intracellular signaling by multiple pathways. We characterized EP receptor expression on three murine mammary tumor cell lines and show that all four EP isoforms were detected in each cell. Stimulation of cells with either PGE(2) or the selective EP4/EP2 agonist PGE(1)-OH resulted in increased intracellular cyclic AMP and this response was inhibited with either EP2 or EP4 antagonists. Nothing is known about the function of EP receptors in tumor metastasis. We tested the hypothesis that the prevention of EP receptor signaling would, like inhibition of PGE(2) synthesis, inhibit tumor metastasis. Our results show for the first time that antagonism of the EP4 receptor with either AH23848 or ONO-AE3-208 reduced metastasis as compared with vehicle-treated controls. The therapeutic effect was comparable to that observed with the dual COX-1/COX-2 inhibitor indomethacin. EP3 antagonism had no effect on tumor metastasis. Mammary tumor cells migrated in vitro in response to PGE(2) and this chemotactic response was blocked by EP receptor antagonists. Likewise, the proliferation of tumor cells was also directly inhibited by antagonists of either EP4 or EP1/EP2. These studies support the hypothesis that EP receptor antagonists may be an alternative approach to the use of COX inhibitors to prevent tumor metastasis.


Assuntos
Neoplasias Mamárias Experimentais/tratamento farmacológico , Receptores de Prostaglandina E/antagonistas & inibidores , Animais , Compostos de Bifenilo/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Indometacina/farmacologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Naftalenos/farmacologia , Metástase Neoplásica , Fenilbutiratos/farmacologia , Isoformas de Proteínas , Receptores de Prostaglandina E/biossíntese , Receptores de Prostaglandina E/classificação , Receptores de Prostaglandina E Subtipo EP4
12.
Cancer Res ; 66(15): 7701-7, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16885372

RESUMO

Tumor cells aberrantly express chemokines and/or chemokine receptors, and some may promote tumor growth and metastasis. We examined the expression and function of chemokine receptor CXCR3 in a syngeneic murine model of metastatic breast cancer. By flow cytometry, CXCR3 was detected in all murine mammary tumor cell lines examined. All human breast cancer cell lines examined also expressed CXCR3, as did the immortalized but nontumorigenic MCF-10A cell line. Interaction of CXCR3 ligands, CXCL9, CXCL10, and CXCL11, with CXCR3 on the highly malignant murine mammary tumor cell line 66.1 resulted in intracellular calcium mobilization and chemotaxis in vitro. To test the hypothesis that tumor metastasis is facilitated by CXCR3 expressed by tumor cells, we employed a small molecular weight antagonist of CXCR3, AMG487. 66.1 tumor cells were pretreated with AMG487 prior to i.v. injection into immune-competent female mice. Antagonism of CXCR3 on 66.1 tumor cells inhibited experimental lung metastasis, and this antimetastatic activity was compromised in mice depleted of natural killer cells. Systemic administration of AMG487 also inhibited experimental lung metastasis. In contrast to the antimetastatic effect of AMG487, local growth of 66.1 mammary tumors was not affected by receptor antagonism. These studies indicate that murine mammary tumor cells express CXCR3 which facilitates the development of lung metastases. These studies also indicate for the first time that a small molecular weight antagonist of CXCR3 has the potential to inhibit tumor metastasis.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Receptores de Quimiocinas/antagonistas & inibidores , Adenocarcinoma/imunologia , Adenocarcinoma/prevenção & controle , Adenocarcinoma/secundário , Animais , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos SCID , Receptores CXCR3 , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/imunologia
13.
Sci Transl Med ; 10(467)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429355

RESUMO

The diagnostic definition of indeterminate lung nodules as malignant or benign poses a major challenge for clinicians. We discovered a potential marker, the sodium-dependent glucose transporter 2 (SGLT2), whose activity identified metabolically active lung premalignancy and early-stage lung adenocarcinoma (LADC). We found that SGLT2 is expressed early in lung tumorigenesis and is found specifically in premalignant lesions and well-differentiated adenocarcinomas. SGLT2 activity could be detected in vivo by positron emission tomography (PET) with the tracer methyl 4-deoxy-4-[18F] fluoro-alpha-d-glucopyranoside (Me4FDG), which specifically detects SGLT activity. Using a combination of immunohistochemistry and Me4FDG PET, we identified high expression and functional activity of SGLT2 in lung premalignancy and early-stage/low-grade LADC. Furthermore, selective targeting of SGLT2 with FDA-approved small-molecule inhibitors, the gliflozins, greatly reduced tumor growth and prolonged survival in autochthonous mouse models and patient-derived xenografts of LADC. Targeting SGLT2 in lung tumors may intercept lung cancer progression at early stages of development by pairing Me4FDG PET imaging with therapy using SGLT2 inhibitors.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Terapia de Alvo Molecular , Transportador 2 de Glucose-Sódio/metabolismo , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Masculino , Camundongos SCID , Camundongos Transgênicos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Res ; 78(8): 1986-1999, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29431637

RESUMO

Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated, including in non-small cell lung cancer (NSCLC). Here, we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo Snail-mediated transformation relied upon silencing of the tumor-suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC.Significance: This study defines a Snail-ESRP1 cancer axis that is crucial for human lung carcinogenesis, with implications for new intervention strategies and translational opportunities. Cancer Res; 78(8); 1986-99. ©2018 AACR.


Assuntos
Transformação Celular Neoplásica/genética , Inativação Gênica , Pulmão/patologia , Proteínas de Ligação a RNA/genética , Fatores de Transcrição da Família Snail/fisiologia , Animais , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Modelos Animais
15.
Cancer Cell ; 33(5): 905-921.e5, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29763624

RESUMO

Altered metabolism is a hallmark of cancer growth, forming the conceptual basis for development of metabolic therapies as cancer treatments. We performed in vivo metabolic profiling and molecular analysis of lung squamous cell carcinoma (SCC) to identify metabolic nodes for therapeutic targeting. Lung SCCs adapt to chronic mTOR inhibition and suppression of glycolysis through the GSK3α/ß signaling pathway, which upregulates glutaminolysis. Phospho-GSK3α/ß protein levels are predictive of response to single-therapy mTOR inhibition while combinatorial treatment with the glutaminase inhibitor CB-839 effectively overcomes therapy resistance. In addition, we identified a conserved metabolic signature in a broad spectrum of hypermetabolic human tumors that may be predictive of patient outcome and response to combined metabolic therapies targeting mTOR and glutaminase.


Assuntos
Benzenoacetamidas/administração & dosagem , Compostos de Boro/administração & dosagem , Carcinoma de Células Escamosas/metabolismo , Glutamina/metabolismo , Glicina/análogos & derivados , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias Pulmonares/metabolismo , Tiadiazóis/administração & dosagem , Animais , Benzenoacetamidas/farmacologia , Compostos de Boro/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicina/administração & dosagem , Glicina/farmacologia , Glicólise , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Transplante de Neoplasias , Transdução de Sinais/efeitos dos fármacos , Tiadiazóis/farmacologia
16.
Cancer Prev Res (Phila) ; 10(9): 514-524, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28754664

RESUMO

Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8 weeks after selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short-term assays and enhanced outgrowth of premalignant lesions in longer-term assays, thus overcoming important aspects of "metastatic inefficiency." Overall, our findings indicate that among immortalized premalignant airway epithelial cell lines, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior. Cancer Prev Res; 10(9); 514-24. ©2017 AACRSee related editorial by Hynds and Janes, p. 491.


Assuntos
Brônquios/citologia , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais/patologia , Neoplasias Pulmonares/genética , Animais , Brônquios/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Organismos Livres de Patógenos Específicos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Clin Cancer Res ; 23(16): 4556-4568, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468947

RESUMO

Purpose: A phase I study was conducted to determine safety, clinical efficacy, and antitumor immune responses in patients with advanced non-small cell lung carcinoma (NSCLC) following intratumoral administration of autologous dendritic cells (DC) transduced with an adenoviral (Ad) vector expressing the CCL21 gene (Ad-CCL21-DC). We evaluated safety and tumor antigen-specific immune responses following in situ vaccination (ClinicalTrials.gov: NCT01574222).Experimental Design: Sixteen stage IIIB/IV NSCLC subjects received two vaccinations (1 × 106, 5 × 106, 1 × 107, or 3 × 107 DCs/injection) by CT- or bronchoscopic-guided intratumoral injections (days 0 and 7). Immune responses were assessed by tumor antigen-specific peripheral blood lymphocyte induction of IFNγ in ELISPOT assays. Tumor biopsies were evaluated for CD8+ T cells by IHC and for PD-L1 expression by IHC and real-time PCR (RT-PCR).Results: Twenty-five percent (4/16) of patients had stable disease at day 56. Median survival was 3.9 months. ELISPOT assays revealed 6 of 16 patients had systemic responses against tumor-associated antigens (TAA). Tumor CD8+ T-cell infiltration was induced in 54% of subjects (7/13; 3.4-fold average increase in the number of CD8+ T cells per mm2). Patients with increased CD8+ T cells following vaccination showed significantly increased PD-L1 mRNA expression.Conclusions: Intratumoral vaccination with Ad-CCL21-DC resulted in (i) induction of systemic tumor antigen-specific immune responses; (ii) enhanced tumor CD8+ T-cell infiltration; and (iii) increased tumor PD-L1 expression. Future studies will evaluate the role of combination therapies with PD-1/PD-L1 checkpoint inhibition combined with DC-CCL21 in situ vaccination. Clin Cancer Res; 23(16); 4556-68. ©2017 AACR.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiocina CCL21/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Adulto , Idoso , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Quimiocina CCL21/genética , Estudos de Coortes , Células Dendríticas/metabolismo , Células Dendríticas/transplante , Dispneia/etiologia , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Injeções Intralesionais , Interferon gama/imunologia , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Dor/etiologia
18.
Cell Rep ; 18(3): 601-610, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099841

RESUMO

Cancer cells exhibit increased use of nutrients, including glucose and glutamine, to support the bioenergetic and biosynthetic demands of proliferation. We tested the small-molecule inhibitor of glutaminase CB-839 in combination with erlotinib on epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) as a therapeutic strategy to simultaneously impair cancer glucose and glutamine utilization and thereby suppress tumor growth. Here, we show that CB-839 cooperates with erlotinib to drive energetic stress and activate the AMP-activated protein kinase (AMPK) pathway in EGFR (del19) lung tumors. Tumor cells undergo metabolic crisis and cell death, resulting in rapid tumor regression in vivo in mouse NSCLC xenografts. Consistently, positron emission tomography (PET) imaging with 18F-fluoro-2-deoxyglucose (18F-FDG) and 11C-glutamine (11C-Gln) of xenografts indicated reduced glucose and glutamine uptake in tumors following treatment with CB-839 + erlotinib. Therefore, PET imaging with 18F-FDG and 11C-Gln tracers can be used to non-invasively measure metabolic response to CB-839 and erlotinib combination therapy.


Assuntos
Apoptose/efeitos dos fármacos , Benzenoacetamidas/toxicidade , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/toxicidade , Glutaminase/antagonistas & inibidores , Tiadiazóis/toxicidade , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Benzenoacetamidas/uso terapêutico , Radioisótopos de Carbono/química , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Fluordesoxiglucose F18/química , Glutaminase/metabolismo , Glutamina/química , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Mutação , Interferência de RNA , Compostos Radiofarmacêuticos/química , Tiadiazóis/uso terapêutico , Transplante Heterólogo
19.
Cancer Res ; 75(22): 4910-22, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26574479

RESUMO

Inactivation of the LKB1 tumor suppressor is a frequent event in non-small cell lung carcinoma (NSCLC) leading to the activation of mTOR complex 1 (mTORC1) and sensitivity to the metabolic stress inducer phenformin. In this study, we explored the combinatorial use of phenformin with the mTOR catalytic kinase inhibitor MLN0128 as a treatment strategy for NSCLC bearing comutations in the LKB1 and KRAS genes. NSCLC is a genetically and pathologically heterogeneous disease, giving rise to lung tumors of varying histologies that include adenocarcinomas and squamous cell carcinomas (SCC). We demonstrate that phenformin in combination with MLN0128 induced a significant therapeutic response in KRAS/LKB1-mutant human cell lines and genetically engineered mouse models of NSCLC that develop both adenocarcinomas and SCCs. Specifically, we found that KRAS/LKB1-mutant lung adenocarcinomas responded strongly to phenformin + MLN0128 treatment, but the response of SCCs to single or combined treatment with MLN0128 was more attenuated due to acquired resistance to mTOR inhibition through modulation of the AKT-GSK signaling axis. Combinatorial use of the mTOR inhibitor and AKT inhibitor MK2206 robustly inhibited the growth and viability of squamous lung tumors, thus providing an effective strategy to overcome resistance. Taken together, our findings define new personalized therapeutic strategies that may be rapidly translated into clinical use for the treatment of KRAS/LKB1-mutant adenocarcinomas and squamous cell tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Estresse Fisiológico/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Fenformin/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/farmacologia
20.
Breast Dis ; 20: 137-43, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15687714

RESUMO

Breast cancers, like other malignancies, commonly express a repertoire of both chemokines and chemokine receptors. While some are more often expressed in certain histological types, a few general concepts are emerging that provide clues to the pathobiological role of these ligand receptor pairs. The receptor CXCR4 is often expressed in solid tumors and evidence is growing that this receptor plays a role in the growth and lymph node metastasis of breast and other cancers responding to ligand expressed at metastatic sites. Likewise, CCR7 is expressed in breast and other cancers and, in some cases, is associated with more aggressive disease. Like chemokine receptors, some ligands also modulate tumor behavior. CCL5 expression is associated with more aggressive breast cancers. CXC chemokines containing the ELR motif are expressed endogenously by some cancers, act as autocrine growth factors and support tumor angiogenesis. ELR-negative CXC chemokines inhibit tumor growth and metastasis when expressed at high levels by attracting immune effector cells and inhibiting angiogenesis. The roles of other chemokine receptors and ligands are under active investigation.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Quimiocinas/imunologia , Imunoterapia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA