Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 386(6): 509-520, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34914868

RESUMO

BACKGROUND: New treatments are needed to reduce the risk of progression of coronavirus disease 2019 (Covid-19). Molnupiravir is an oral, small-molecule antiviral prodrug that is active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We conducted a phase 3, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of treatment with molnupiravir started within 5 days after the onset of signs or symptoms in nonhospitalized, unvaccinated adults with mild-to-moderate, laboratory-confirmed Covid-19 and at least one risk factor for severe Covid-19 illness. Participants in the trial were randomly assigned to receive 800 mg of molnupiravir or placebo twice daily for 5 days. The primary efficacy end point was the incidence hospitalization or death at day 29; the incidence of adverse events was the primary safety end point. A planned interim analysis was performed when 50% of 1550 participants (target enrollment) had been followed through day 29. RESULTS: A total of 1433 participants underwent randomization; 716 were assigned to receive molnupiravir and 717 to receive placebo. With the exception of an imbalance in sex, baseline characteristics were similar in the two groups. The superiority of molnupiravir was demonstrated at the interim analysis; the risk of hospitalization for any cause or death through day 29 was lower with molnupiravir (28 of 385 participants [7.3%]) than with placebo (53 of 377 [14.1%]) (difference, -6.8 percentage points; 95% confidence interval [CI], -11.3 to -2.4; P = 0.001). In the analysis of all participants who had undergone randomization, the percentage of participants who were hospitalized or died through day 29 was lower in the molnupiravir group than in the placebo group (6.8% [48 of 709] vs. 9.7% [68 of 699]; difference, -3.0 percentage points; 95% CI, -5.9 to -0.1). Results of subgroup analyses were largely consistent with these overall results; in some subgroups, such as patients with evidence of previous SARS-CoV-2 infection, those with low baseline viral load, and those with diabetes, the point estimate for the difference favored placebo. One death was reported in the molnupiravir group and 9 were reported in the placebo group through day 29. Adverse events were reported in 216 of 710 participants (30.4%) in the molnupiravir group and 231 of 701 (33.0%) in the placebo group. CONCLUSIONS: Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with Covid-19. (Funded by Merck Sharp and Dohme; MOVe-OUT ClinicalTrials.gov number, NCT04575597.).


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Hidroxilaminas/uso terapêutico , Administração Oral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/efeitos adversos , COVID-19/virologia , Citidina/efeitos adversos , Citidina/uso terapêutico , Método Duplo-Cego , Feminino , Humanos , Hidroxilaminas/efeitos adversos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Resultado do Tratamento , Carga Viral , Adulto Jovem
2.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926637

RESUMO

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Assuntos
Brassica napus , Ácido Salicílico , Estresse Salino , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo
3.
Cancer Cell Int ; 24(1): 59, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321552

RESUMO

Peroxiredoxin 3 (PRDX3), a mitochondrial hydrogen peroxide scavenger, is known to be upregulated during tumorigenesis and cancer progression. In this study, we provide evidence for the first time that PRDX3 could regulate cellular signaling pathways associated with Matrix Metalloproteinase-1 (MMP-1) expression and activity in breast cancer progression. We show that shRNA-mediated gene silencing of PRDX3 inhibits cell migration and invasion in two triple-negative breast cancer cell lines. Reciprocal experiments show that PRDX3 overexpression promotes invasion and migration of the cancer cells, processes which are important in the metastatic cascade. Notably, this phenomenon may be attributed to the activation of MMP-1, which is observed to be upregulated by PRDX3 in the breast cancer cells. Moreover, immunohistochemical staining of breast cancer tissues revealed a positive correlation between PRDX3 and MMP-1 expression in both epithelial and stromal parts of the tissues. Further pathway reporter array and luciferase assay demonstrated that activation of ERK signaling is responsible for the transcriptional activation of MMP-1 in PRDX3-overexpressed cells. These findings suggest that PRDX3 could mediate cancer spread via ERK-mediated activation of MMP-1. Targeted inhibition of ERK signaling may be able to inhibit tumor metastasis in triple-negative breast cancer.

4.
Ecotoxicol Environ Saf ; 281: 116620, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38905935

RESUMO

Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.

5.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460406

RESUMO

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Assuntos
Ammi , Poluentes do Solo , Titânio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análise , Ecossistema , Estresse Oxidativo , Solo , Expressão Gênica , Poluentes do Solo/análise
6.
Ecotoxicol Environ Saf ; 274: 116204, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489905

RESUMO

Climate change and cadmium (Cd) contamination pose severe threats to rice production and food security. Biochar (BC) has emerged as a promising soil amendment for mitigating these challenges. To investigate the BC effects on paddy soil upon GHG emissions, Cd bioavailability, and its accumulation, a meta-analysis of published data from 2000 to 2023 was performed. Data Manager 5.3 and GetData plot Digitizer software were used to obtain and process the data for selected parameters. Our results showed a significant increase of 18% in soil pH with sewage sludge BC application, while 9% increase in soil organic carbon (SOC) using bamboo chips BC. There was a significant reduction in soil bulk density (8%), but no significant effects were observed for soil porosity, except for wheat straw BC which reduced the soil porosity by 6%. Sewage sludge and bamboo chips BC significantly reduced carbon dioxide (CO2) by 7-8% while municipal biowaste reduced methane (CH4) emissions by 2%. In the case of heavy metals, sunflower seedshells-derived materials and rice husk BC significantly reduced the bioavailable Cd in paddy soils by 24% and 12%, respectively. Cd uptake by rice roots was lowered considerably by the addition of kitchen waste (22%), peanut hulls (21%), and corn cob (15%) based BC. Similarly, cotton sticks, kitchen waste, peanut hulls, and rice husk BC restricted Cd translocation from rice roots to shoots by 22%, 27%, 20%, and 19%, respectively, while sawdust and rice husk-based BC were effective for reducing Cd accumulation in rice grains by 25% and 13%. Regarding rice yield, cotton sticks-based BC significantly increased the yield by 37% in Cd-contaminated paddy soil. The meta-analysis demonstrated that BC is an effective and multi-pronged strategy for sustainable and resilient rice cultivation by lowering greenhouse gas emissions and Cd accumulation while improving yields under the increasing threat of climate change.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo , Dióxido de Carbono/análise , Esgotos , Metano , Carbono , Carvão Vegetal , Arachis , Poluentes do Solo/análise
7.
Nano Lett ; 23(9): 3858-3865, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126737

RESUMO

Postsynthetic chemical transformation provides a powerful platform for creating heteronanostructures (HNs) with well-defined materials and interfaces that generate synergy or enhancement. However, it remains a synthetic bottleneck for the precise construction of HNs with increased degrees of complexity and more elaborate functions in a predictable manner. Herein, we define a general transformative protocol for metal phosphosulfide HNs based on tunable hexagonal Cu1.81S frameworks with corner-, edge- and face-controlled growth of Co2P domains. The region-controlled Cu1.81S-Co2P framework interfaces can serve as "kinetic barriers" in mediating the direction and rate between P and S anion exchange reactions, thus leading to a family of morphology and phase designed Cu3P1-xSx-Co2P HNs with hollow (branched, dotted and crown), porous and core-shell architectures. This study reveals the internal transformation mechanism between metal sulfide and phosphide nanocrystals, and opens up a new way for the rational synthesis of metastable HNs that are otherwise inaccessible.

8.
Comput Inform Nurs ; 42(6): 448-456, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261470

RESUMO

Patients with head and neck cancer undergoing radiotherapy encounter physical and psychosocial challenges, indicating unmet needs. Mobile health technology can potentially support patients. This single-armed feasibility study included 30 patients with head and neck cancer undergoing radiotherapy. Patients were asked to use the Health Enjoy System, a mobile health support system that provides a disease-related resource for 1 week. We assessed the usability of the system and its limited efficacy in meeting patients' health information needs. The result showed that the system was well received by patients and effectively met their health information needs. They also reported free comments on the system's content, backend maintenance, and user engagement. This study supplies a foundation for further research to explore the potential benefits of the Health Enjoy System in supporting patients with head and neck cancer.


Assuntos
Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço , Telemedicina , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Aplicativos Móveis
9.
J Gene Med ; 25(6): e3485, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36811210

RESUMO

BACKGROUND: Long non-coding RNAs have been established to promote or inhibit the oncogenic and tumorigenic potential of various cancers, acting as competing endogenous RNAs (ceRNAs) for specific microRNAs. The primary objective of the study was to investigate the underlying mechanism by which the LINC02027/miR-625-3p/PDLIM5 axis affects proliferation, migration and invasion in hepatocellular carcinoma (HCC). METHODS: The differentially expressed gene was selected based on gene sequencing and bioinformation database analysis of HCC and adjacent non-tumor tissues. The expression of LINC02027 in HCC tissues and cells and its regulatory effect on the development of HCC were detected by colony formation, cell counting kit-8 assays, wound healing assays, Transwell assays and subcutaneous tumorigenesis assays in nude mice. According to the results of database prediction, quantitative real-time polymerase chain reaction and dual-luciferase reporter assay, the downstream microRNA and target gene were searched. Finally, HCC cells were transfected with lentivirus and used for cell function assays in vitro and in vivo. RESULTS: Downregulation of LINC02027 was detected in HCC tissues and cell lines and was associated with poor prognosis. The overexpression of LINC02027 suppressed the proliferation, migration and invasion of HCC cells. Mechanistically, LINC02027 inhibited epithelial-to-mesenchymal transition. As a ceRNA, LINC02027 inhibited the malignant ability of HCC by competitively binding to miR-625-3p to regulate the expression of PDLIM5. CONCLUSIONS: The LINC02027/miR-625-3p/PDLIM5 axis inhibits the development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
10.
J Neuroinflammation ; 20(1): 247, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880726

RESUMO

BACKGROUND: The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS: Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS: 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS: Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Fatores de Transcrição NFI , Canais de Cátion TRPV , Animais , Humanos , Camundongos , 4-Aminopiridina/efeitos adversos , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima
11.
Plant Physiol ; 189(4): 2481-2499, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604107

RESUMO

Chinese jujube (Ziziphus jujuba) is an important fruit tree in China, and soil salinity is the main constraint affecting jujube production. It is unclear how arbuscular mycorrhizal (AM) symbiosis supports jujube adaptation to salt stress. Herein, we performed comparative physiological, ion flux, fatty acid (FA) metabolomic, and transcriptomic analyses to examine the mechanism of AM jujube responding to salt stress. AM seedlings showed better performance during salt stress. AM symbiosis altered phytohormonal levels: indole-3-acetic acid and abscisic acid contents were significantly increased in AM roots and reduced by salt stress. Mycorrhizal colonization enhanced root H+ efflux and K+ influx, while inducing expression of plasma membrane-type ATPase 7 (ZjAHA7) and high-affinity K+ transporter 2 (ZjHAK2) in roots. High K+/Na+ homeostasis was maintained throughout salt exposure. FA content was elevated in AM leaves as well as roots, especially for palmitic acid, oleic acid, trans oleic acid, and linoleic acid, and similar effects were also observed in AM poplar (Populus. alba × Populus. glandulosa cv. 84K) and Medicago truncatula, indicating AM symbiosis elevating FA levels could be a conserved physiological effect. Gene co-expression network analyses uncovered a core gene set including 267 genes in roots associated with AM symbiosis and conserved transcriptional responses, for example, FA metabolism, phytohormone signal transduction, SNARE interaction in vesicular transport, and biotin metabolism. In contrast to widely up-regulated genes related to FA metabolism in AM roots, limited genes were affected in leaves. We propose a model of AM symbiosis-linked reprogramming of FA metabolism and provide a comprehensive insight into AM symbiosis with a woody species adaptation to salt stress.


Assuntos
Micorrizas , Ziziphus , Frutas , Micorrizas/fisiologia , Ácido Oleico/metabolismo , Raízes de Plantas/metabolismo , Estresse Salino , Simbiose/genética
12.
BMC Cancer ; 23(1): 131, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755222

RESUMO

BACKGROUND: To explore the correlation of tumor necrosis factor-α-induced protein 8-like protein 3 (TIPE3) expressions in colorectal cancer (CRC) with tumor-immune infiltration and patient prognosis. METHODS: Formalin-fixed paraffin-embedded tumor samples from CRC patients (n = 110) were used in this study. Immunohistochemistry staining of TIPE3 and three prognostic immune biomarkers (CD8, CD20, and CD66b) was conducted in the tumor tissues and adjacent normal tissues. A Cox regression analysis of univariate and multivariate variables was performed to assess the correlation between TIPE3 and patient prognosis. RESULT: We found that TIPE3 was mainly expressed in the cytoplasm, with a small amount in the nucleus. The expression of TIPE3 in tumor tissues is significantly higher than in adjacent normal tissues, and it is significantly correlated with the survival rate of patients in tumor tissues (p = 0.0038) and adjacent normal tissues (p<0.0001). Patients with a high TIPE3 expression had a lower survival rate, while patients with a low TIPE3 expression had a higher survival rate. Univariate regression analysis showed that the TIPE3 expression in tumor tissues (p = 0.007), the TIPE3 expression in adjacent normal tissues (p<0.001), the number of CD8+ T cells in tumor tissues (p = 0.020), the number of CD20+ B cells in tumor tissues (p = 0.023), the number of CD20+ B cells in adjacent normal tissues (p = 0.023), the number of CD66b+ neutrophils in tumor tissues (p = 0.005), the number of CD66b+ neutrophils in adjacent normal tissues (p<0.001), lymphatic metastasis (p = 0.010), TNM stage (p = 0.013), and tumor grade (p = 0.027) were significantly correlated with overall survival (OS). These prognostic factors were then subjected to multivariate regression analysis, and the results showed that the expression of TIPE3, the number of CD8+ T cells, and the number of CD66b+ neutrophils were prognostic factors affecting the OS rate of CRC patients. CONCLUSION: We found that the TIPE3 protein is upregulated in CRC cancer tissues and is correlated with survival rate.


Assuntos
Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metástase Linfática , Prognóstico , Fator de Necrose Tumoral alfa , Peptídeos e Proteínas de Sinalização Intracelular/genética
13.
Gastrointest Endosc ; 97(4): 664-672.e4, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36509114

RESUMO

BACKGROUND AND AIMS: Although narrow-band imaging (NBI) is a useful modality for detecting and delineating esophageal squamous cell carcinoma (ESCC), there is a risk of incorrectly determining the margins of some lesions even with NBI. This study aimed to develop an artificial intelligence (AI) system for detecting superficial ESCC and precancerous lesions and delineating the extent of lesions under NBI. METHODS: Nonmagnified NBI images from 4 hospitals were collected and annotated. Internal and external image test datasets were used to evaluate the detection and delineation performance of the system. The delineation performance of the system was compared with that of endoscopists. Furthermore, the system was directly integrated into the endoscopy equipment, and its real-time diagnostic capability was prospectively estimated. RESULTS: The system was trained and tested using 10,047 still images and 140 videos from 1112 patients and 1183 lesions. In the image testing, the accuracy of the system in detecting lesions in internal and external tests was 92.4% and 89.9%, respectively. The accuracy of the system in delineating extents in internal and external tests was 88.9% and 87.0%, respectively. The delineation performance of the system was superior to that of junior endoscopists and similar to that of senior endoscopists. In the prospective clinical evaluation, the system exhibited satisfactory performance, with an accuracy of 91.4% in detecting lesions and an accuracy of 85.9% in delineating extents. CONCLUSIONS: The proposed AI system could accurately detect superficial ESCC and precancerous lesions and delineate the extent of lesions under NBI.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lesões Pré-Cancerosas , Humanos , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/patologia , Estudos Prospectivos , Inteligência Artificial , Lesões Pré-Cancerosas/diagnóstico por imagem , Imagem de Banda Estreita , Endoscopia Gastrointestinal
14.
Infection ; 51(5): 1273-1284, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36648627

RESUMO

PURPOSE: Immunocompromised patients have a potentially increased risk for progression to severe COVID-19 and prolonged replication of SARS-CoV-2. This post hoc analysis examined outcomes among immunocompromised participants in the MOVe-OUT trial. METHODS: In phase 3 of MOVe-OUT, non-hospitalized at-risk adults with mild-to-moderate COVID-19 were randomized to receive molnupiravir 800 mg or placebo twice daily for 5 days. Immunocompromised participants were identified based on prior/concomitant medications and/or medical history. All-cause hospitalization/death, adverse events, SARS-CoV-2 titers, infectivity, and RNA sequences were compared between immunocompromised participants who received molnupiravir or placebo and with non-immunocompromised participants. RESULTS: Fifty-five of 1408 participants were considered immunocompromised. Compared to placebo, fewer molnupiravir-treated immunocompromised participants were hospitalized/died through Day 29 (22.6% [7/31] vs. 8.3% [2/24]), with fewer adverse events (45.2% [14/31] vs. 25.0% [6/24]). A larger mean change from baseline in SARS-CoV-2 RNA was observed with molnupiravir compared to placebo in non-immunocompromised participants (least squares mean [LSM] difference Day 5: - 0.31, 95% confidence interval [CI] - 0.47 to - 0.15), while the mean change was comparable between treatment groups in immunocompromised participants (LSM difference Day 5: 0.23, 95% CI - 0.71 to 1.17). Molnupiravir treatment was associated with increased clearance of infectious virus. Increased errors in viral nucleotide sequences in post-baseline samples compared to placebo support molnupiravir's mechanism of action and were not associated with observation of novel treatment-emergent amino acid substitutions in immunocompromised participants. CONCLUSION: Although the study population was small, these data suggest that molnupiravir treatment for mild-to-moderate COVID-19 in non-hospitalized immunocompromised adults is efficacious and safe and quickly reduces infectious SARS-CoV-2. GOV REGISTRATION NUMBER: NCT04575597.


Assuntos
COVID-19 , Adulto , Humanos , Tratamento Farmacológico da COVID-19 , RNA Viral , SARS-CoV-2
15.
Physiol Plant ; 175(2): e13873, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36762694

RESUMO

The coordination/trade-off among below-ground strategies for phosphorus (P) acquisition, including root morphology, carboxylate exudation and colonisation by arbuscular mycorrhizal fungi (AMF), is not well understood. This is the first study investigating the relationships between root nodulation, morphology, carboxylates and colonisation by an indigenous community of AMF under varying P levels and source. Two chickpea genotypes with contrasting amounts of rhizosheath carboxylates were grown in pots at six P levels (from 0 to 160 µg g-1 ) as KH2 PO4 (KP, highly soluble) or FePO4 (FeP, sparingly soluble), with or without AMF (±AMF) treatment. Under both FeP and KP, the presence of AMF inhibited shoot growth and shoot branching, decreased total root length and specific root length, increased mean root diameter and root tissue density and reduced carboxylates. However, the role of AMF in acquiring P differed between the two P sources, with the enhanced P acquisition under FeP while not under KP. Co-inoculation of AMF and rhizobia enhanced nodulation under FeP, but not under KP. Our results suggest that the effects of AMF on shoot branching were mediated by cytokinins as the reduced shoot branching in FeP40 and KP40 under +AMF relative to -AMF coincided with a decreased concentration of cytokinins in xylem sap for both genotypes.


Assuntos
Cicer , Micorrizas , Fósforo , Raízes de Plantas , Fosfatos , Ferro
16.
Inorg Chem ; 62(1): 583-590, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563110

RESUMO

Ruthenium (Ru)-based materials, as a class of efficient hydrogen evolution reaction (HER) catalysts, play an important role in hydrogen generation by electrolysis of water in an alkaline solution for clean hydrogen energy. Hybrid nanostructure (HN) materials, which include two or more components with distinct functionality, show better performance than their individual materials, since HN materials can potentially integrate their advantages and overcome the weaknesses. However, it remains a challenge to construct Ru-based HN materials with desired crystal phases for enhanced HER performances. Herein, a series of new Ru-based HN materials (t-Ru-RuS2, S-Ru-RuS2, and T-Ru-RuS2) through phase engineering of nanomaterials (PEN) and chemical transformation are designed to achieve highly efficient HER properties. Owing to the plentiful formation of heterojunctions and amorphous/crystalline interfaces, the t-Ru-RuS2 HN delivers the most outstanding overpotential of 16 mV and owns a small Tafel slope of 29 mV dec-1 at a current density of 10 mA cm-2, which exceeds commercial Pt/C catalysts (34 mV, 38 mV dec-1). This work shows a new insight for HN and provides alternative opportunities in designing advanced electrocatalysts with low cost for HER in the hydrogen economy.

17.
Clin Exp Nephrol ; 27(12): 1060-1066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668806

RESUMO

BACKGROUND: Phospholipase A2 receptor (PLA2R)-associated membranous nephropathy (MN) was manifested as seropositive for PLA2R antibodies (SAb) and/or glomerular PLA2R antigens' (GAg) deposits. According to the test of SAb and GAg, PLA2R-associated MN can be divided into SAb + /GAg-, SAb-/GAg + , and SAb + /GAg + groups. The clinical characteristics and outcomes of the three groups need to be further evaluated. METHODS: 184 PLA2R-associated MN patients were enrolled. SAb was measured by enzyme-linked immunosorbent assay with a cut-off value of 14 RU/mL. GAg was detected by immunofluorescence using a paraffin section of renal biopsy samples. Clinical characteristics and the decline of eGFR were compared among the 3 groups. RESULTS: There were 33 SAb + /GAg-, 46 SAb-/GAg +, and 105 SAb + /GAg + PLA2R-associated MN patients reviewed. Clinical characteristics, such as the level of proteinuria, serum albumin, as well as eGFR, were comparable between the SAb + /GAg- and SAb + /GAg + patients. While SAb-/GAg + patients exhibited mild clinical manifestations as evidenced by higher serum albumin (P < 0.001) and lower proteinuria (p = 0.049) compared with SAb + /GAg + patients. After 21.96 ± 7.39 month follow-up, the eGFR decrease was no difference between the SAb + /GAg- and SAb + /GAg + patients. SAb-/GAg + patients had a lower rate of the > 20% eGFR decline as well as a 50% eGFR decline compared with the SAb + /GAg + patients (10.87% vs 30.48%, p = 0.013; 0.00% vs 4.76%, p = 0.324). CONCLUSIONS: Our study showed that the clinical manifestations of SAb + /Gag- patients were the same as those of double-positive patients, while SAb-/GAg + patients exhibited mild clinical manifestations and slower eGFR decline compared to the double-positive patients.


Assuntos
Glomerulonefrite Membranosa , Humanos , Receptores da Fosfolipase A2 , Proteinúria/etiologia , Autoanticorpos , Albumina Sérica
18.
Neoplasma ; 70(2): 260-271, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37226933

RESUMO

Metabolic reprogramming is a common feature of glioblastoma (GBM) progression and metastasis. Altered lipid metabolism is one of the most prominent metabolic alterations in cancer. Understanding the links between phospholipid remodeling and GBM tumorigenesis may help develop new anticancer strategies and improve treatments to overcome drug resistance. We used metabolomic and transcriptomic analyses to systematically investigate metabolic and molecular changes in low-grade glioma (LGG) and GBM. We then re-established the reprogrammed metabolic flux and membrane lipid composition in GBM based on metabolomic and transcriptomic analyses. By inhibiting Aurora A kinase via RNA interference (RNAi) and inhibitor treatment, we investigated the effect of Aurora A kinase on phospholipid reprogramming LPCAT1 enzyme expression and GBM cell proliferation in vitro and in vivo. We found that GBM displayed aberrant glycerophospholipid and glycerolipid metabolism compared with LGG. Metabolic profiling indicated that fatty acid synthesis and uptake for phospholipid synthesis were significantly increased in GBM compared to LGG. The unsaturated phosphatidylcholine (PC) and phosphatidylethanolamine (PE) levels were significantly decreased in GBM compared to LGG. The expression level of LPCAT1, which is required for the synthesis of saturated PC and PE, was upregulated in GBM, and the expression of LPCAT4, which is required for the synthesis of unsaturated PC and PE, was downregulated in GBM. Notably, the inhibition of Aurora A kinase by shRNA knockdown and treatment with Aurora A kinase inhibitors such as Alisertib, AMG900, or AT9283 upregulated LPCAT1 mRNA and protein expression in vitro. In vivo, the inhibition of Aurora A kinase with Alisertib increased LPCAT1 protein expression. Phospholipid remodeling and a reduction in unsaturated membrane lipid components were found in GBM. Aurora A kinase inhibition increased LPCAT1 expression and suppressed GBM cell proliferation. The combination of Aurora kinase inhibition with LPCAT1 inhibition may exert promising synergistic effects on GBM.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Fosfolipídeos , Aurora Quinase A , Lipídeos de Membrana , 1-Acilglicerofosfocolina O-Aciltransferase
19.
BMC Musculoskelet Disord ; 24(1): 452, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270561

RESUMO

BACKGROUND: The lower limb mechanical axis was used to assess the severity of knee osteoarthritis (KOA) with varus/valgus deformity and the accuracy of targeted lower limb alignment correction after operation by conventional X-rays. There are lots of parameters to assess the gait in elder patients such as velocity, stride length, step width and swing/stance ratio by knee joint movement analysis system. However, the correlation between the lower limb mechanical axis and gait parameters is not clear. This study is aimed at obtaining the accuracy of the lower limb mechanical axis by the knee joint movement analysis system and the correlation between the lower limb mechanical axis and gait parameters. METHODS: We analysed 3D knee kinematics during ground gait of 99 patients with KOA and 80 patients 6 months after the operations with the vivo infrared navigation 3D portable knee joint movement analysis system (Opti-Knee®, Innomotion Inc, Shanghai, China). The HKA (Hip-Knee-Ankle) value was calculated and compared to X-ray findings. RESULTS: HKA absolute variation after the operation was 0.83 ± 3.76°, which is lower than that before the operation (5.41 ± 6.20°, p = 0.001) and also lower than the entire cohort (3.36 ± 5.72). Throughout the cohort, a significant correlation with low coefficients (r = -0.19, p = 0.01) between HKA value and anterior-posterior displacement was found. In comparing the HKA values measured on the full-length alignment radiographs and 3D knee joint movement analysis system (Opti-Knee), there was a significant correlation with moderate to high coefficients (r = 0.784 to 0.976). The linear correlation analysis showed that there was a significant correlation between the values of HKA measured by X-ray and movement analysis system (R2 = 0.90, p < 0.01). CONCLUSIONS: Data with equivalent results as HKA, the 6DOF of the knee and ground gait data could be provided by infrared navigation based 3D portable knee joint movement analysis system comparing with the conventional X-rays. There is no significant effect of HKA on the kinematics of the partial knee joint.


Assuntos
Tornozelo , Osteoartrite do Joelho , Humanos , Idoso , Raios X , China , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Extremidade Inferior , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Marcha , Postura , Estudos Retrospectivos
20.
Ann Intern Med ; 175(8): 1126-1134, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35667065

RESUMO

BACKGROUND: In the MOVe-OUT trial, molnupiravir showed a clinically meaningful reduction in the risk for hospitalization or death in adults with mild to moderate COVID-19 and risk factors for progression to severe disease. OBJECTIVE: To identify other potential clinical benefits of molnupiravir versus placebo. DESIGN: Secondary analysis of the randomized, double-blind, placebo-controlled phase 3 component of MOVe-OUT. (ClinicalTrials.gov: NCT04575597). SETTING: 107 sites globally. PARTICIPANTS: 1433 nonhospitalized adults aged 18 years or older with mild to moderate COVID-19. INTERVENTION: Molnupiravir, 800 mg, or placebo every 12 hours for 5 days. MEASUREMENTS: Changes from baseline in C-reactive protein (CRP) concentration and oxygen saturation (Spo 2), need for respiratory interventions (including invasive mechanical ventilation), and need for medical services in all randomly assigned participants through day 29, and need for respiratory interventions and time to discharge in the subgroup of participants who were hospitalized after randomization. RESULTS: Participants receiving molnupiravir showed faster normalization of CRP and Spo 2, with improvements observed on day 3 of therapy, compared with placebo. Molnupiravir-treated participants had a decreased need for respiratory interventions versus placebo-treated participants (relative risk reduction [RRR], 34.3% [95% CI, 4.3% to 54.9%]), with similar findings in participants who were hospitalized after randomization (RRR, 21.3% [CI, 0.2% to 38.0%]). Hospitalized participants who received molnupiravir were discharged a median of 3 days before those who received placebo. Acute care visits (7.2% vs. 10.6%; RRR, 32.1% [CI, 4.4% to 51.7%]) and COVID-19-related acute care visits (6.6% vs. 10.0%; RRR, 33.8% [CI, 5.6% to 53.6%]) were less frequent in molnupiravir- versus placebo-treated participants. LIMITATIONS: Some analyses were performed post hoc. Longer-term benefits of molnupiravir therapy were not evaluated. Participants were not immunized against SARS-CoV-2. CONCLUSION: The findings suggest there are additional important clinical benefits of molnupiravir beyond reduction in hospitalization or death. PRIMARY FUNDING SOURCE: Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc.


Assuntos
COVID-19 , Adulto , Biomarcadores , COVID-19/terapia , Citidina/análogos & derivados , Método Duplo-Cego , Humanos , Hidroxilaminas , Respiração Artificial , SARS-CoV-2 , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA