Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9658-9668, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768036

RESUMO

Manure application is a global approach for enhancing soil organic carbon (SOC) sequestration. However, the response of SOC decomposition in manure-applied soil to abrupt warming, often occurring during diurnal temperature fluctuations, remains poorly understood. We examined the effects of long-term (23 years) continuous application of manure on SOC chemical composition, soil respiration, and microbial communities under temperature shifts (15 vs 25 °C) in the presence of plant residues. Compared to soil without fertilizer, manure application reduced SOC recalcitrance indexes (i.e., aliphaticity and aromaticity) by 17.45 and 21.77%, and also reduced temperature sensitivity (Q10) of native SOC decomposition, plant residue decomposition, and priming effect by 12.98, 15.98, and 52.83%, respectively. The relative abundances of warm-stimulated chemoheterotrophic bacteria and fungi were lower in the manure-applied soil, whereas those of chemoautotrophic Thaumarchaeota were higher. In addition, the microbial network of the manure-applied soil was more interconnected, with more negative connections with the warm-stimulated taxa than soils without fertilizer or with chemical fertilizer applied. In conclusion, our study demonstrated that the reduced loss of SOC to abrupt warming by manure application arises from C chemistry modification, less warm-stimulated microorganisms, a more complex microbial community, and the higher CO2 intercepting capability by Thaumarchaeota.


Assuntos
Carbono , Esterco , Microbiota , Microbiologia do Solo , Solo , Solo/química , Fertilizantes , Temperatura
2.
Bioelectromagnetics ; 41(8): 617-629, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33027532

RESUMO

Picosecond pulse electrical fields (psPEFs), due to their high temporal-resolution accuracy and localization, were viewed as a potential targeted and noninvasive method for neuromodulation. However, few studies have reported psPEFs regulating neuronal activity in vivo. In this paper, a preliminary study on psPEFs regulating action potentials in hippocampus CA1 of rats in vivo was carried out. By analyzing the neuronal spike firing rate in hippocampus CA1 pre- and post-psPEF stimulation, effects of frequency, duration, and dosimetry of psPEFs were studied. The psPEF used in this study had a pulse width of 500 ps and a field strength of 1 kV/mm, established by 1 kV picosecond voltage pulses. Results showed that the psPEF suppressed spike firing in hippocampal CA1 neurons. The suppression effect was found to be significant except for 10 s, 10 Hz. For short-duration stimulation (10 s), the inhibition rate of spike firing increased with frequency. At longer stimulation durations (1 and 2 min), the inhibition rate increased and decreased alternately as the frequency increased. Despite this, the inhibition rate at high frequencies (5 and 10 kHz) was significantly larger than that at 10 and 100 Hz. A cumulative effect of psPEF on spike firing inhibition was found at low frequencies (10 and 100 Hz), which was saturated when frequency reached 500 Hz or higher. This paper conducts a study on psPEF regulating spike firing in hippocampal CA1 in vivo for the first time and guides subsequent study on psPEF achieving noninvasive neuromodulation. © 2020 Bioelectromagnetics Society.


Assuntos
Região CA1 Hipocampal/fisiologia , Eletricidade , Animais , Região CA1 Hipocampal/citologia , Masculino , Neurônios/citologia , Ratos
3.
J Gastroenterol ; 58(12): 1222-1236, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665532

RESUMO

BACKGROUND: Identifying past temporal trends in non-alcoholic steatohepatitis (NASH)-associated liver cancer (NALC) can increase public awareness of the disease and facilitate future policy development. METHODS: Annual deaths and age-standardized death rates (ASDR) for NALC from 1990 to 2019 were collected from the Global Burden of Disease (GBD) 2019 study. The long-term trend and the critical inflection of mortality of NALC were detected by Joinpoint analysis. Age-period-cohort analysis was employed to evaluate the effects of age, period, and cohort. Last, decomposition analysis was used to reveal the aging and population growth effects for NALC burden. RESULTS: Between 1990 and 2019, the ASDR of NALC witnessed an overall declining trend on a global scale, with a decrease in females and a stable trend in males. However, the global ASDR demonstrated a significant upward trend from 2010 to 2019. Southern sub-Saharan Africa and Southeast Asia have the highest NALC burdens, while high socio-demographic index (SDI) region experienced the fastest escalation of NALC burdens over 30 years. The decomposition analysis revealed that population growth and aging were the primary catalysts behind the increase in global NALC deaths. Age-period-cohort analyses showed that NALC mortality declined the fastest among females aged 40-45 years in high SDI region, accompanied by a deteriorating period effect trend during the period of 2010-2019. CONCLUSION: The global absolute deaths and ASDR of NALC have witnessed a rise in the past decade, with populations exhibiting considerable disparities based on sex, age, and region. Population growth, aging, and metabolism-related factors were the main factors behind the increase in global NALC deaths.


Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Masculino , Feminino , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Saúde Global , Carga Global da Doença , Distribuição por Idade , Estudos de Coortes
4.
Sci Total Environ ; 863: 160704, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36481142

RESUMO

Rare earth elements (REE) are extensively exploited in the agricultural ecosystems due to their various beneficial roles on plant growth. However, the ecotoxicological effects and environmental risk of REE are poorly assessed. Here, we investigated the effects of lanthanum and cerium nitrate on soil prokaryote and viral metal resistance genes (MRGs) and antibiotics resistance genes (ARGs) using a metagenomic-based approach. We found that relative abundances of prokaryote phyla Bacteroidetes and Chloroflexi decreased with increasing of both REE compounds. In addition, low level REE nitrate (0.05 and 0.1 mmol kg-1 soil) inhibited the viral family Phycodanaviridae, Rudiviridae, Schitoviridae, whereas high level (0.16 and 0.32 mmol kg-1 soil) REE nitrate suppressed the viral family Herelleviridae, Iridoviridae, Podoviridae. ARGs were not significantly affected by low level of REE nitrate. However, high level of both REEs nitrate increased the abundances of dominant prokaryote genes resisting to most of the drug classes, such as aminoglycoside, elfamycin, fluoroquinolone, macrolide, rifamycin. Abundance of MRGs in prokaryote did not change consistently with REE nitrate compound type and input rate. MRGs were only partially detected in the virome in some of the treatments, while ARGs was not detected in virome. Together, we demonstrated that overuse of REE nitrate in agriculture would increase the risk of dissemination of ARGs through prokaryotes but not virus, although viral community was substantially shifted.


Assuntos
Antibacterianos , Metais Terras Raras , Antibacterianos/toxicidade , Viroma , Nitratos , Ecossistema , Metais , Genes Bacterianos , Solo , Metagenômica
5.
Sci Total Environ ; 842: 156814, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732237

RESUMO

Lignin and cellulose are the most important component of crop straw entering arable soil. The decomposition of lignin and cellulose are related to carbon sequestration and soil fertility. The keystone microbes decomposing lignin and cellulose in cropland and their impact on agricultural management, however, remains largely unclear. In this study, we traced the carbon (C) from highly enriched 13C-labeled (atom% 13C = 99 %) lignin and cellulose to functional keystone microbes in soils of a 26-year fertilization field experiment with stable isotope probing (SIP). 13C-cellulose and 13C-lignin decomposition were significantly accelerated with the long-term application of fertilization, especially with the combination of organic and chemical fertilization (NPKM). The 13C was mainly assimilated by bacteria Acidobacteria (i.e. GP1, GP3, GP6), Proteobacteria (i.e. unidentified gamaproteobactiera, Bradyrhizobium), and fungi Ascomycota (i.e. Talaromyces and Fusarium, etc.). The keystone bacteria taxa decomposing cellulose and lignin were large overlapped, but substantially shaped by fertilization. For instance, GP3 was the dominant bacterium that decomposed both cellulose and lignin in no fertilizer control (CK), while GP1 and GP6 were the ones in chemical fertilization (NPK) and NPKM, respectively. The decomposition rates of cellulose in different fertilizations were majorly predicted by soil total phosphorus (TP), functional fungi abundance, total nitrogen (TN), whereas functional bacterial and fungal abundance, TP, and community structure of functional fungi manipulated the decomposing rate of lignin. Together, we demonstrate that keystone functional microbes decomposing cellulose and lignin were largely concurring and significantly altered by long-term resources enrichment, which drives the similar patterns of decomposition rates of these two substrates along the resource enrichment gradient.


Assuntos
Lignina , Microbiologia do Solo , Bactérias , Celulose , Fertilizantes/análise , Nitrogênio/análise , Fósforo , Solo/química
6.
Sci Total Environ ; 796: 148797, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273835

RESUMO

Soil amendments of black bone (BB), biochar (BC), silicon fertilizer (SI), and leaf fertilizer (LF) play vital roles in decreasing cadmium (Cd) availability, thereby supporting healthy plant growth and food security in agroecosystems. However, the effect of their additions on soil microbial community and the resulting soil Cd bioavailability, plant Cd uptake and health growth are still unknown. Therefore, in this study, BB, BC, SI, and LF were selected to evaluate Cd amelioration in wheat grown in Cd-contaminated soils. The results showed that relative to the control, all amendments significantly decreased both soil Cd bioavailability and its uptake in plant tissues, promoting healthy wheat growth and yield. This induced-decrease effect in seeds was the most obvious, wherein the effect was the highest in SI (52.54%), followed by LF (43.31%), and lowest in BC (35.24%) and BB (31.98%). Moreover, the induced decrease in soil Cd bioavailability was the highest in SI (29.56%), followed by BC (28.85%), lowest in LF (17.55%), and BB (15.30%). The significant effect in SI likely resulted from a significant increase in both the soil bioavailable Si and microbial community (Acidobacteria and Thaumarchaeota), which significantly decreased soil Cd bioavailability towards plant roots. In particular, a co-occurrence network analysis indicated that soil microbes played a substantial role in wheat yield under Si amendment. Therefore, supplying Si alters the soil microbial community, positively and significantly interacting with soil bioavailable Si and decreasing Cd bioavailability in soils, thereby sustaining healthy crop development and food quality.


Assuntos
Microbiota , Oryza , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Cádmio/toxicidade , Carvão Vegetal , Promoção da Saúde , Silício , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA