Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(6): 1031-1039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839721

RESUMO

A novel cyclic chalcone fluorescent probe C-PN was synthesized to detect ONOO-. After reaction with peroxynitrite, the double bond of C-PN in the cyclic chalcone structure was disconnected, which caused the change of intramolecular charge transfer (ICT) effect, emitting blue fluorescence and quenching orange red fluorescence. Visible to the naked eye, the color of the probe solution changed. The probe showed low sensitivity (detection limit = 20.2 nm), short response time (less than 60 s) at low concentration of ONOO-, good visibility, and good selectivity and stability for ONOO-.

2.
Biomed Eng Online ; 23(1): 62, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918766

RESUMO

Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.


Assuntos
Retinopatia Diabética , Proteínas Nucleares , Retinopatia Diabética/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Animais , Epigênese Genética
3.
Stroke ; 54(2): 295-303, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36300372

RESUMO

BACKGROUND: Gender disparities among principal investigators of clinical trials (CT) can have implications regarding the areas of investigation, methods, conduct, trial enrollment, and interpretation of results. An estimation of the gender gap in the leadership of stroke-related CTs from North America has to date not been undertaken. METHODS: We extracted information about stroke-related CTs between 2011 and 2020 from www. CLINICALTRIALS: gov and PubMed. We examined the gender distribution according to the academic credentials and the trial type. The gender of PIs and authors was determined using gender package in R, which identifies gender using historical data from the United States. Additionally, we obtained information from Association of American Medical Colleges and the Accreditation Council for Graduate Medical Education data resource books on the gender composition of full-time neurology faculty, neurology residents and vascular neurology fellows. RESULTS: In these analyses of 821 CTs registered on Clinicaltrials.gov and 110 trials published on PubMed, we found that gender disparity among the PIs, first and last authors have persisted over the last decade without any significant trend toward parity (P>0.05). On examining the gender distribution according to academic credentials and trial type, we found that men were over-represented in the sub-group of PIs with an MD degree (78.11% versus 21.87%; P<0.01) and those leading acute stroke trials (86.04% versus 13.89%; P<0.01). We also found that a lower proportion of women neurology residents pursued a vascular neurology fellowship during this period (33.5% versus 42.5%; P<0.05). CONCLUSIONS: Our results show that the favorable trend toward gender parity seen in Neurology faculty over the last decade has not translated to the same in the leadership of CTs. Our findings merit further investigation and a re-examination of efforts toward inclusion of women as leaders of stroke-related CTs.


Assuntos
Neurologia , Médicas , Feminino , Humanos , Masculino , Docentes de Medicina , Liderança , Fatores Sexuais , Estados Unidos , Ensaios Clínicos como Assunto
4.
Stroke ; 54(12): 3074-3080, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842779

RESUMO

BACKGROUND: Cerebellar intracerebral hemorrhage (cICH) is often attributed to hypertension or cerebral amyloid angiopathy (CAA). However, deciphering the exact etiology can be challenging. A recent study reported a topographical etiologic relationship with superficial cICH secondary to CAA. We aimed to reexamine this relationship between topography and etiology in a separate cohort of patients and using the most recent Boston criteria version 2.0. METHODS: We performed a retrospective analysis of consecutive patients with primary cICH admitted to a tertiary academic center between 2000 and 2022. cICH location on brain computed tomography/magnetic resonance imaging scan(s) was divided into strictly superficial (cortex, surrounding white matter, vermis) versus deep (cerebellar nuclei, deep white matter, peduncular region) or mixed (both regions). Magnetic resonance imaging was rated for markers of cerebral small vessel disease. We assigned possible/probable versus absent CAA using Boston criteria 2.0. RESULTS: We included 197 patients; 106 (53.8%) were females, median age was 74 (63-82) years. Fifty-six (28%) patients had superficial cICH and 141 (72%) deep/mixed cICH. Magnetic resonance imaging was available for 112 (57%) patients (30 [26.8%] with superficial and 82 [73.2%] with deep/mixed cICH). Patients with superficial cICH were more likely to have possible/probable CAA (48.3% versus 8.6%; odds ratio [OR], 11.43 [95% CI, 3.26-40.05]; P<0.001), strictly lobar cerebral microbleeds (51.7% versus 6.2%; OR, 14.18 [95% CI, 3.98-50.50]; P<0.001), and cortical superficial siderosis (13.8% versus 1.2%; OR, 7.70 [95% CI, 0.73-80.49]; P=0.08). Patients with deep/mixed cICH were more likely to have deep/mixed cerebral microbleeds (59.2% versus 3.4%; OR, 41.39 [95% CI, 5.01-341.68]; P=0.001), lacunes (54.9% versus 17.2%; OR, 6.14 [95% CI, 1.89-19.91]; P=0.002), severe basal ganglia enlarged perivascular spaces (36.6% versus 7.1%; OR, 7.63 [95% CI, 1.58-36.73]; P=0.01), hypertension (84.4% versus 62.5%; OR, 3.43 [95% CI, 1.61 to -7.30]; P=0.001), and higher admission systolic blood pressure (172 [146-200] versus 146 [124-158] mm Hg, P<0.001). CONCLUSIONS: Our results suggest that superficial cICH is strongly associated with CAA whereas deep/mixed cICH is strongly associated with hypertensive arteriopathy.


Assuntos
Angiopatia Amiloide Cerebral , Hipertensão , Feminino , Humanos , Idoso , Masculino , Estudos Retrospectivos , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/etiologia , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/patologia , Imageamento por Ressonância Magnética , Hipertensão/complicações , Hipertensão/epidemiologia
5.
Am J Hematol ; 98(6): 869-880, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877527

RESUMO

The efficacy and safety on the addition of vincristine (VCR) and dexamethasone (DEX) pulses to maintenance therapy among childhood acute lymphoblastic leukemia (ALL) remain uncertain. Herein, we perform an open-label, multicentre, randomized, phase III clinical trial that was conducted at nine major medical centers in Guangdong Province, China. Patients were randomly assigned either the conventional maintenance therapy (control group, n = 384) or the VCR/DEX pulse (treatment group, n = 375). When limited to the SR cohort, 10-year EFS was 82.6% (95% CI: 75.9-89.9) in the control group and 80.7% (95% CI: 74-88.1) in the treatment group (pnon-inferiority  = .0002). Similarly, patients with IR also demonstrated non-inferiority of the treatment group to the control group in terms of 10-year EFS (73.6% [95% CI: 67.6-80] vs. 77.6% [95% CI: 71.8-83.9]; pnon-inferiority  = .005). Among the HR cohort, compared with the control group, patients in the treatment group experienced a significant benefit in terms of 10-year EFS (61.1% [95% CI: 47.7-78.2] vs. 72.6% [95% CI: 55.6-94.7], p = .026) and a trend toward higher 10-year OS (73.8% [95% CI: 61.6-88.4] vs. 87.9% [95% CI: 579.2-97.5], p = .068). In the HR cohort, the total rate of drug-induced liver injury and Grade 3 chemotherapy-induced anemia were both lower for patients in the treatment group than in the control group (55.6% vs. 100%, p = .033; 37.5% vs. 60%, p = .036). Conversely, the total prevalence of chemotherapy-induced thrombocytopenia was higher for patients in the treatment group than in the control group (88.9% vs. 40%, p = .027). Pediatric acute lymphoblastic leukemia with high risk is suitable to VCR/DEX pulse during maintenance phase for the excellent outcome, while the standard-to-intermediate-risk patients could eliminate the pulses.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Vincristina , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/uso terapêutico , Dexametasona
6.
J Stroke Cerebrovasc Dis ; 32(12): 107439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488808

RESUMO

BACKGROUND: Hyperglycemia in the acute phase of intracerebral hemorrhage (ICH) has been associated with poor functional outcomes, however all interventions to lower glucose have yielded neutral or negative results. We attempt an explanation of the causal role of hyperglycemia in ΙCH outcome using generalized structural equation modeling. MATERIALS AND METHODS: Consecutive primary ICH patients admitted to an academic hospital between 2007 and 2018 were identified. Patients with missing baseline or follow up CT scans and without 90 day follow up status were excluded. We constructed a causal model accounting for pre-defined markers of ICH severity to evaluate the association between mean 72 h glucose and 90 day functional outcome measured by modified Rankin Scale, dichotomized as favorable ≤2 or unfavorable >2. RESULTS: Primary analyses included 410 patients (70.4 ± 13.8years, 43 % female). Mean 72 h glucose was 137.5 ± 33.4mg/dl and 102 (25 %) patients were diabetic. On univariable analysis, higher glucose levels were negatively correlated with favorable outcome (p < 0.0001). However in the structural equation model, this relationship was significantly attenuated (p = 0.06) after accounting for the causal effect of diabetes (p < 0.0001), hematoma volume (p < 0.0001), intraventricular extension (p = 0.01) and Glasgow coma scale (p = 0.001) on glucose levels. On secondary analyses stratifying by diagnosis of diabetes, higher glucose levels were negatively correlated with favorable outcome in patients without diabetes (p = 0.04), but not in patients with diabetes (p = 0.35). CONCLUSIONS: Hyperglycemia may be a downstream effect of other markers of ICH severity, particularly among patients without diabetes, suggesting a possible explanation for the limited evidence of glucose lowering interventions in outcome.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Feminino , Masculino , Resultado do Tratamento , Hiperglicemia/complicações , Hiperglicemia/diagnóstico , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/terapia , Hemorragia Cerebral/complicações , Glucose , Estudos Retrospectivos , Prognóstico
7.
Microb Ecol ; 83(1): 114-126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33743015

RESUMO

Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity, and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF], and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass, and enzyme activities were strongly affected by vegetation restoration, and soil bacterial and fungal communities were significantly different from each other at the sites. Correlation analysis showed that LB and FRB were significantly positively correlated with the Chao index of soil bacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota, and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH, and nutrients have important effects on the bacterial and fungal diversities, as well as Acidobacteria, Proteobacteria, Actinobacteria, Nitrospirae, Zygomycota, and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities, and the composition and diversity of soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.


Assuntos
Microbiota , Solo , Biomassa , China , Nutrientes , Solo/química , Microbiologia do Solo
8.
Alzheimers Dement ; 18(11): 2327-2340, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35234334

RESUMO

OBJECTIVE: Evaluating the efficacy of 3,6'-dithioPomalidomide in 5xFAD Alzheimer's disease (AD) mice to test the hypothesis that neuroinflammation is directly involved in the development of synaptic/neuronal loss and cognitive decline. BACKGROUND: Amyloid-ß (Aß) or tau-focused clinical trials have proved unsuccessful in mitigating AD-associated cognitive impairment. Identification of new drug targets is needed. Neuroinflammation is a therapeutic target in neurodegenerative disorders, and TNF-α a pivotal neuroinflammatory driver. NEW HYPOTHESIS: AD-associated chronic neuroinflammation directly drives progressive synaptic/neuronal loss and cognitive decline. Pharmacologically mitigating microglial/astrocyte activation without altering Aß generation will define the role of neuroinflammation in AD progression. MAJOR CHALLENGES: Difficulty of TNF-α-lowering compounds reaching brain, and identification of a therapeutic-time window to preserve the beneficial role of neuroinflammatory processes. LINKAGE TO OTHER MAJOR THEORIES: Microglia/astroglia are heavily implicated in maintenance of synaptic plasticity/function in healthy brain and are disrupted by Aß. Mitigation of chronic gliosis can restore synaptic homeostasis/cognitive function.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Peptídeos beta-Amiloides , Cognição , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia , Doenças Neuroinflamatórias , Plasticidade Neuronal , Fator de Necrose Tumoral alfa
9.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361041

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6'-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Gliose/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Talidomida/análogos & derivados , Animais , Lesões Encefálicas Traumáticas/complicações , Cognição , Gliose/etiologia , Hipocampo/metabolismo , Fatores Imunológicos/farmacologia , Masculino , Memória , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Talidomida/farmacologia , Talidomida/uso terapêutico
10.
BMC Genomics ; 21(1): 288, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264854

RESUMO

BACKGROUND: The family of NAC proteins (NAM, ATAF1/2, and CUC2) represent a class of large plant-specific transcription factors. However, identification and functional surveys of NAC genes of tomato (Solanum lycopersicum) remain unstudied, despite the tomato genome being decoded for several years. This study aims to identify the NAC gene family and investigate their potential roles in responding to Al stress. RESULTS: Ninety-three NAC genes were identified and named in accordance with their chromosome location. Phylogenetic analysis found SlNACs are broadly distributed in 5 groups. Gene expression analysis showed that SlNACs had different expression levels in various tissues and at different fruit development stages. Cycloheximide treatment and qRT-PCR analysis indicated that SlNACs may aid regulation of tomato in response to Al stress, 19 of which were significantly up- or down-regulated in roots of tomato following Al stress. CONCLUSION: This work establishes a knowledge base for further studies on biological functions of SlNACs in tomato and will aid in improving agricultural traits of tomato in the future.


Assuntos
Alumínio/administração & dosagem , Perfilação da Expressão Gênica/métodos , Solanum lycopersicum/fisiologia , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico , Cicloeximida/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Família Multigênica/efeitos dos fármacos , Filogenia , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/efeitos dos fármacos
11.
New Phytol ; 225(4): 1732-1745, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31608986

RESUMO

The mechanisms involved in the regulation of gene expression in response to phosphate (Pi) deficiency have been extensively studied, but their chromatin-level regulation remains poorly understood. We examined the role of histone acetylation in response to Pi deficiency by using the histone deacetylase complex1 (hdc1) mutant. Genes involved in root system architecture (RSA) remodeling were analyzed by quantitative real-time polymerase chain reaction (qPCR) and chromatin immunoprecipitation qPCR. We demonstrate that histone H3 acetylation increased under Pi deficiency, and the hdc1 mutant was hypersensitive to Pi deficiency, with primary root growth inhibition and increases in root hair number. Concomitantly, Pi deficiency repressed HDC1 protein abundances. Under Pi deficiency, hdc1 accumulated higher concentrations of Fe3+ in the root tips and had higher expression of genes involved in RSA remodeling, such as ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1), LOW PHOSPHATE ROOT1 (LPR1), and LPR2 compared with wild-type plants. Furthermore, Pi deficiency enriched the histone H3 acetylation of ALMT1 and LPR1. Finally, genetic evidence showed that LPR1/2 was epistatic to HDC1 in regulating RSA remodeling. Our results suggest a chromatin-level control of Pi starvation responses in which HDC1-mediated histone H3 deacetylation represses the transcriptional activation of genes involved in RSA remodeling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Fosfatos/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/genética , Raízes de Plantas/enzimologia , Plantas Geneticamente Modificadas
12.
J Org Chem ; 85(4): 2716-2724, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886664

RESUMO

Copper-catalyzed multicomponent borylacylation of imines with acid chlorides and bis(pinacolato)diboron was developed for the preparation of synthetically useful and pharmacologically relevant α-amino boronic acid derivatives. Starting from a range of acid chlorides and imines with aryl, heteroaryl, and alkyl substituents, most of these ligand-free reactions proceeded smoothly at room temperature in moderate to good yields. Furthermore, a facile and convenient one-pot, multistep access to the direct synthesis of α-amino boronic acid derivatives from available aldehydes and amines was also developed.

13.
Cereb Cortex ; 29(10): 4035-4049, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30462186

RESUMO

Adolescence is marked by increased vulnerability to mental disorders and maladaptive behaviors, including anorexia nervosa. Food-restriction (FR) stress evokes foraging, which translates to increased wheel running exercise (EX) for caged rodents, a maladaptive behavior, since it does not improve food access and exacerbates weight loss. While almost all adolescent rodents increase EX following FR, some then become resilient by suppressing EX by the second-fourth FR day, which minimizes weight loss. We asked whether GABAergic plasticity in the hippocampus may underlie this gain in resilience. In vitro slice physiology revealed doubling of pyramidal neurons' GABA response in the dorsal hippocampus of food-restricted animals with wheel access (FR + EX for 4 days), but without increase of mIPSC amplitudes. mIPSC frequency increased by 46%, but electron microscopy revealed no increase in axosomatic GABAergic synapse number onto pyramidal cells and only a modest increase (26%) of GABAergic synapse lengths. These changes suggest increase of vesicular release probability and extrasynaptic GABAA receptors and unsilencing of GABAergic synapses. GABAergic synapse lengths correlated with individual's suppression of wheel running and weight loss. These analyses indicate that EX can have dual roles-exacerbate weight loss but also promote resilience to some by dampening hippocampal excitability.


Assuntos
Adaptação Psicológica/fisiologia , Privação de Alimentos/fisiologia , Hipocampo/fisiopatologia , Atividade Motora , Células Piramidais/fisiologia , Estresse Psicológico/fisiopatologia , Redução de Peso/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores , Inibição Neural , Esforço Físico , Ratos Sprague-Dawley
14.
Stroke ; 55(5): e140-e143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545785
15.
Neural Plast ; 2019: 4252943, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949429

RESUMO

Transcranial direct current stimulation (tDCS) is a noninvasive technique for modulating neural plasticity and is considered to have therapeutic potential in neurological disorders. For the purpose of translational neuroscience research, a suitable animal model can be ideal for providing a stable condition for identifying mechanisms that can help to explore therapeutic strategies. Here, we developed a tDCS protocol for modulating motor excitability in anesthetized rats. To examine the responses of tDCS-elicited plasticity, the motor evoked potential (MEP) and MEP input-output (IO) curve elicited by epidural motor cortical electrical stimulus were evaluated at baseline and after 30 min of anodal tDCS or cathodal tDCS. Furthermore, a paired-pulse cortical electrical stimulus was applied to assess changes in the inhibitory network by measuring long-interval intracortical inhibition (LICI) before and after tDCS. In the results, analogous to those observed in humans, the present study demonstrates long-term potentiation- (LTP-) and long-term depression- (LTD-) like plasticity can be induced by tDCS protocol in anesthetized rats. We found that the MEPs were significantly enhanced immediately after anodal tDCS at 0.1 mA and 0.8 mA and remained enhanced for 30 min. Similarly, MEPs were suppressed immediately after cathodal tDCS at 0.8 mA and lasted for 30 min. No effect was noted on the MEP magnitude under sham tDCS stimulation. Furthermore, the IO curve slope was elevated following anodal tDCS and presented a trend toward diminished slope after cathodal tDCS. No significant differences in the LICI ratio of pre- to post-tDCS were observed. These results indicated that developed tDCS schemes can produce consistent, rapid, and controllable electrophysiological changes in corticomotor excitability in rats. This newly developed tDCS animal model could be useful to further explore mechanical insights and may serve as a translational platform bridging human and animal studies, establishing new therapeutic strategies for neurological disorders.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Eletrodos Implantados , Masculino , Ratos , Ratos Sprague-Dawley , Estimulação Transcraniana por Corrente Contínua/instrumentação
16.
Sensors (Basel) ; 19(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100944

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. In recent studies, the efficacy of suberoylanilide hydroxamic acid (SAHA) has been investigated for GBM. We explored the effects of two exploratory compounds, the histone deacetylase SAHA and the natural product andrographolide, on Uppsala 87 Malignant Glioma (U-87 MG) cell migration and viability in comparison with the clinically used therapeutic agent temozolomide (TMZ). We used the electric cell-substrate impedance sensing (ECIS) system to monitor the migration of U-87 MG cells after treatment with various concentrations of these compounds. Moreover, we used the Alamar blue assay and western blotting to observe the concentration-dependent changes in the viability and apoptosis of U-87 MG cells. Our results demonstrated that both SAHA and andrographolide (10-300 µM) significantly inhibited GBM cell migration in a concentration-dependent manner, and 10 µM SAHA and 56 µM andrographolide demonstrated remarkable inhibitory effects on U-87 MG migration. Western blotting indicated that compared with TMZ, both SAHA and andrographolide induced higher expression levels of apoptosis-related proteins, such as caspase-3, BAX, and PARP in U-87 MG cells. Furthermore, all three drugs downregulated the expression of the antiapoptotic protein Bcl-2. In conclusion, SAHA and andrographolide showed exceptional results in inhibiting cell migration and motility. The ECIS wound healing assay is a powerful technique to identify and screen potential therapeutic agents that can inhibit cancer cell migration.


Assuntos
Técnicas Biossensoriais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Impedância Elétrica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Temozolomida/farmacologia , Vorinostat/farmacologia
17.
Sensors (Basel) ; 19(14)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330904

RESUMO

Electric cell-substrate impedance sensing (ECIS) is an emerging technique for sensitively monitoring morphological changes of adherent cells in tissue culture. In this study, human mesenchymal stem cells (hMSCs) were exposed to different concentrations of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) for 20 h and their subsequent concentration-dependent responses in micromotion and wound healing migration were measured by ECIS. FCCP disrupts ATP synthesis and results in a decrease in cell migration rates. To detect the change of cell micromotion in response to FCCP challenge, time-series resistances of cell-covered electrodes were monitored and the values of variance were calculated to verify the difference. While Seahorse XF-24 extracellular flux analyzer can detect the effect of FCCP at 3 µM concentration, the variance calculation of the time-series resistances measured at 4 kHz can detect the effect of FCCP at concentrations as low as 1 µM. For wound healing migration, the recovery resistance curves were fitted by sigmoid curve and the hill slope showed a concentration-dependent decline from 0.3 µM to 3 µM, indicating a decrease in cell migration rate. Moreover, dose dependent incline of the inflection points from 0.3 µM to 3 µM FCCP implied the increase of the half time for wound recovery migration. Together, our results demonstrate that partial uncoupling of mitochondrial oxidative phosphorylation reduces micromotion and wound healing migration of hMSCs. The ECIS method used in this study offers a simple and sensitive approach to investigate stem cell migration and its regulation by mitochondrial dynamics.


Assuntos
Técnicas de Cultura de Células , Impedância Elétrica , Células-Tronco Mesenquimais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos
18.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682785

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. Long-term deficits after TBI arise not only from the direct effects of the injury but also from ongoing processes such as neuronal excitotoxicity, inflammation, oxidative stress and apoptosis. Tumor necrosis factor-α (TNF-α) is known to contribute to these processes. We have previously shown that 3,6'-dithiothalidomide (3,6'-DT), a thalidomide analog that is more potent than thalidomide with similar brain penetration, selectively inhibits the synthesis of TNF-α in cultured cells and reverses behavioral impairments induced by mild TBI in mice. In the present study, we further explored the therapeutic potential of 3,6'-DT in an animal model of moderate TBI using Sprague-Dawley rats subjected to controlled cortical impact. A single dose of 3,6'-DT (28 mg/kg, i.p.) at 5 h after TBI significantly reduced contusion volume, neuronal degeneration, neuronal apoptosis and neurological deficits at 24 h post-injury. Expression of pro-inflammatory cytokines in the contusion regions were also suppressed at the transcription and translation level by 3,6'-DT. Notably, neuronal oxidative stress was also suppressed by 3,6'-DT. We conclude that 3,6'-DT may represent a potential therapy to ameliorate TBI-induced functional deficits.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Talidomida/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Talidomida/farmacologia , Talidomida/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
19.
Neurobiol Dis ; 96: 216-226, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27553877

RESUMO

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Neuronal apoptosis in the hippocampus has been detected after TBI. The hippocampal dysfunction may result in cognitive deficits in learning, memory, and spatial information processing. Our previous studies demonstrated that a p53 inhibitor, pifithrin-α oxygen analogue (PFT-α (O)), significantly reduced cortical cell death, which is substantial following controlled cortical impact (CCI) TBI, and improved neurological functional outcomes via anti-apoptotic mechanisms. In the present study, we examined the effect of PFT-α (O) on CCI TBI-induced hippocampal cellular pathophysiology in light of this brain region's role in memory. To investigate whether p53-dependent apoptosis plays a role in hippocampal neuronal loss and associated cognitive deficits and to define underlying mechanisms, SD rats were subjected to experimental CCI TBI followed by the administration of PFT-α or PFT-α (O) (2mg/kg, i.v.) or vehicle at 5h after TBI. Magnetic resonance imaging (MRI) scans were acquired at 24h and 7days post-injury to assess evolving structural hippocampal damage. Fluoro-Jade C was used to stain hippocampal sub-regions, including CA1 and dentate gyrus (DG), for cellular degeneration. Neurological functions, including motor and recognition memory, were assessed by behavioral tests at 7days post injury. p53, p53 upregulated modulator of apoptosis (PUMA), 4-hydroxynonenal (4-HNE), cyclooxygenase-IV (COX IV), annexin V and NeuN were visualized by double immunofluorescence staining with cell-specific markers. Levels of mRNA encoding for caspase-3, p53, PUMA, Bcl-2, Bcl-2-associated X protein (BAX) and superoxide dismutase (SOD) were measured by RT-qPCR. Our results showed that post-injury administration of PFT-α and, particularly, PFT-α (O) at 5h dramatically reduced injury volumes in the ipsilateral hippocampus, improved motor outcomes, and ameliorated cognitive deficits at 7days after TBI, as evaluated by novel object recognition and open-field test. PFT-α and especially PFT-α (O) significantly reduced the number of FJC-positive cells in hippocampus CA1 and DG subregions, versus vehicle treatment, and significantly decreased caspase-3 and PUMA mRNA expression. PFT-α (O), but not PFT-α, treatment significantly lowered p53 and elevated SOD2 mRNA expression. Double immunofluorescence staining demonstrated that PFT-α (O) treatment decreased p53, annexin V and 4-HNE positive neurons in the hippocampal CA1 region. Furthermore, PUMA co-localization with the mitochondrial maker COX IV, and the upregulation of PUMA were inhibited by PFT-α (O) after TBI. Our data suggest that PFT-α and especially PFT-α (O) significantly reduce hippocampal neuronal degeneration, and ameliorate neurological and cognitive deficits in vivo via antiapoptotic and antioxidative properties.


Assuntos
Benzotiazóis/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Transtornos Cognitivos , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/metabolismo , Aldeídos/metabolismo , Animais , Anexina A5/genética , Anexina A5/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Benzotiazóis/química , Benzotiazóis/farmacologia , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Fluoresceínas/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxigênio , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Fatores de Tempo , Tolueno/química , Tolueno/farmacologia , Tolueno/uso terapêutico , Proteína Supressora de Tumor p53/genética
20.
J Neuroinflammation ; 13(1): 168, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27353053

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a global health concern that typically causes emotional disturbances and cognitive dysfunction. Secondary pathologies following TBI may be associated with chronic neurodegenerative disorders and an enhanced likelihood of developing dementia-like disease in later life. There are currently no approved drugs for mitigating the acute or chronic effects of TBI. METHODS: The effects of the drug pomalidomide (Pom), an FDA-approved immunomodulatory agent, were evaluated in a rat model of moderate to severe TBI induced by controlled cortical impact. Post-TBI intravenous administration of Pom (0.5 mg/kg at 5 or 7 h and 0.1 mg/kg at 5 h) was evaluated on functional and histological measures that included motor function, fine more coordination, somatosensory function, lesion volume, cortical neurodegeneration, neuronal apoptosis, and the induction of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6). RESULTS: Pom 0.5 mg/kg administration at 5 h, but not at 7 h post-TBI, significantly mitigated the TBI-induced injury volume and functional impairments, neurodegeneration, neuronal apoptosis, and cytokine mRNA and protein induction. To evaluate underlying mechanisms, the actions of Pom on neuronal survival, microglial activation, and the induction of TNF-α were assessed in mixed cortical cultures following a glutamate challenge. Pom dose-dependently ameliorated glutamate-mediated cytotoxic effects on cell viability and reduced microglial cell activation, significantly attenuating the induction of TNF-α. CONCLUSIONS: Post-injury treatment with a single Pom dose within 5 h significantly reduced functional impairments in a well-characterized animal model of TBI. Pom decreased the injury lesion volume, augmented neuronal survival, and provided anti-inflammatory properties. These findings strongly support the further evaluation and optimization of Pom for potential use in clinical TBI.


Assuntos
Encefalite/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Transtornos Motores/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Transtornos Psicomotores/tratamento farmacológico , Distúrbios Somatossensoriais/tratamento farmacológico , Talidomida/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Lateralidade Funcional/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Transtornos Motores/etiologia , Degeneração Neural/etiologia , Fosfopiruvato Hidratase/metabolismo , Transtornos Psicomotores/etiologia , Ratos , Ratos Sprague-Dawley , Distúrbios Somatossensoriais/etiologia , Talidomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA