Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(1): 36-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512344

RESUMO

The molecular mechanism for the microgravity-induced decrease in bone formation remains unclear and there is a lack of effective specific preventative therapies. We recently reported that primary cilia of osteoblasts became shorter and even disappeared when the cells were exposed to random positioning machine (RPM)-simulated microgravity and that the microgravity-induced loss of osteogenic potential of osteoblasts could be attenuated when the resorption of primary cilia was prevented by treatment with 0.1 µM cytochalasin D. In the current study, it was further found that the loss of the osteogenic capacity of rat calvarial osteoblasts (ROBs) was associated with the inhibition of the BMP-2/Smad1/5/8 signalling pathway, of which most of the signalling proteins including BMP-2, BMPRII, Smad1/5/8 and p-Smad1/5/8 were found localized to primary cilia. Accompanying the resorption of primary cilia following the cells being exposed to simulated microgravity, the expression levels of these signalling proteins were reduced significantly. Furthermore, the expression of miRNA-129-3p, a microRNA previously reported to control cilium biogenesis, was found to be reduced quickly and changed in a similar tendency with the length of primary cilia. Moreover, overexpression of miRNA-129-3p in ROBs significantly attenuated microgravity-induced inhibition of BMP-2 signalling and loss of osteogenic differentiation and mineralization. These results indicated the important role of miRNA-129-3p in microgravity-induced resorption of primary cilia of osteoblasts and the potential of replenishing the miRNA-129-3p as an effective countermeasure against microgravity-induced loss of primary cilia and impairment of osteoblast function.


Assuntos
MicroRNAs , Ausência de Peso , Ratos , Animais , Osteogênese/genética , Cílios/metabolismo , Ausência de Peso/efeitos adversos , Diferenciação Celular/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo
2.
J Cell Physiol ; 238(11): 2692-2709, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796139

RESUMO

Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.


Assuntos
Cílios , Osteoblastos , Osteogênese , Estresse Oxidativo , Canais de Cátion TRPV , Ausência de Peso , Animais , Ratos , Cílios/metabolismo , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Células Cultivadas , Morfolinas/farmacologia , Pirróis/farmacologia , Gravitação
3.
J Cell Physiol ; 234(7): 11276-11286, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30565680

RESUMO

Cancer chemotherapy can cause significant damage to the bone marrow (BM) microvascular (sinusoidal) system. Investigations must now address whether and how BM sinusoidal endothelial cells (SECs) can be protected during chemotherapy. Herein we examined the potential protective effects of genistein, a soy-derived flavonoid, against BM sinusoidal damage caused by treatment with methotrexate (MTX). The groups of young adult rats were gavaged daily with genistein (20 mg/kg) or placebo. After 1 week, rats also received daily injections of MTX (0.75 mg/kg) or saline for 5 days and were killed after a further 4 days. Histological analyses showed that BM sinusoids were markedly dilated ( p < 0.001) in the MTX-alone group but were unaffected or less dilated in the genistein+MTX group. In control rats, genistein significantly enhanced expression of vascular endothelial growth factor (VEGF; p < 0.01), particularly in osteoblasts, and angiogenesis marker CD31 ( p < 0.001) in bone. In MTX-treated rats, genistein suppressed MTX-induced apoptosis of BM SECs ( p < 0.001 vs MTX alone group) and tended to increase expression of CD31 and VEGF ( p < 0.05). Our in vitro studies showed that genistein in certain concentrations protected cultured SECs from MTX cytotoxic effects. Genistein enhanced tube formation of cultured SECs, which is associated with its ability to induce expression of endothelial nitric oxide synthase and production of nitric oxide. These data suggest that genistein can protect BM sinusoids during MTX therapy, which is associated, at least partially, with its indirect effect of promoting VEGF expression in osteoblasts and its direct effect of enhancing nitric oxide production in SECs.


Assuntos
Anticarcinógenos/farmacologia , Antimetabólitos Antineoplásicos/efeitos adversos , Medula Óssea/irrigação sanguínea , Genisteína/farmacologia , Metotrexato/efeitos adversos , Animais , Medula Óssea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Osteoblastos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/biossíntese
4.
Acta Pharmacol Sin ; 39(11): 1760-1767, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29891857

RESUMO

Bone loss induced by microgravity is a substantial barrier to humans in long-term spaceflight. Recent studies have revealed that icariin (ICA) can attenuate osteoporosis in postmenopausal women and ovariectomized rats. However, whether ICA can protect against microgravity-induced bone loss remains unknown. In this study, the effects of ICA on a hindlimb suspension rodent model were investigated. Two-month-old female Wistar rats were hindlimb suspended and treated with ICA (25 mg·kg-1·d-1, i.g.) or a vehicle for 4 weeks (n = 6). The bone mass density of the hindlimbs was analyzed using dual-energy X-ray absorptiometry and micro-CT. mRNA expression of osteogenic genes in the tibia and the content of bone metabolism markers in serum were measured using qRT-PCR and ELISA, respectively. The bone mineral phase was analyzed using X-ray diffraction and atomic spectrometry. The results showed that ICA treatment significantly rescued the hindlimb suspension-induced reduction in bone mineral density, trabecular number and thickness, as well as the increases in trabecular separation and the structure model index. In addition, ICA treatment recovered the decreased bone-related gene expression, including alkaline phosphatase (ALP), bone glaprotein (BGP), and osteoprotegerin/receptor activator of the NF-κB ligand ratio (OPG/RANKL), in the tibia and the decreased bone resorption marker TRACP-5b levels in serum caused by simulated microgravity. Notably, ICA treatment restored the instability of bone biological apatite and the metabolic disorder of bone mineral elicited by simulated microgravity. These results demonstrate that ICA treatment plays osteoprotective roles in bone loss induced by simulated microgravity by inhibiting bone resorption and stabilizing bone biological apatite.


Assuntos
Apatitas/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/prevenção & controle , Flavonoides/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Elevação dos Membros Posteriores , Metais Leves/metabolismo , Ratos Wistar
5.
Biomed Environ Sci ; 31(2): 126-135, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29606191

RESUMO

OBJECTIVE: To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms. METHODS: Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats. RESULTS: Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-5b) in serum was in line with the changes in trabecular parameters. CONCLUSION: Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone.


Assuntos
Reabsorção Óssea/etiologia , Ritmo Ultradiano , Simulação de Ausência de Peso/efeitos adversos , Raios X/efeitos adversos , Animais , Fenômenos Biomecânicos , Densidade Óssea/fisiologia , Reabsorção Óssea/metabolismo , Fêmur/metabolismo , Elevação dos Membros Posteriores , Ratos Sprague-Dawley , Tíbia/metabolismo
6.
BMC Med Imaging ; 17(1): 44, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732493

RESUMO

BACKGROUND: This study was aimed to evaluate the feasibility and accuracy of real-time three-dimensional echocardiography (RT-3DE) measurement of left atrial (LA) volume and function in comparison with two-dimensional echocardiography (2DE) measurements in atrial fibrillation (AF) patients. METHODS: A total of 50 pairs of AF patients and healthy controls were enrolled in this study. Indexed LA end-diastole volume (ILAEDV) and indexed LA end-systolic volume (ILAESV), as well as LA function indices such as segmental LA ejection fraction (LAEF), were assessed using 2DE Simpson's method and the RT-3DE method. RESULTS: The images showed that regional LA volume-time curves and LAEF were disordered in AF patients. ILAEDV and ILAESV were markedly increased and global LAEF was significantly decreased in AF patients compared with those in healthy controls (P < 0.01). No significant differences were found in ILAEDV, ILAESV, and LAEF levels as determined by the RT-3DE method or 2DE Simpson's method. Bland-Altman analysis showed that the two methods agreed well for measuring ILAEDV, ILAESV, and segmental LAEF. CONCLUSION: The RT-3DE method may be a feasible and accurate method for evaluating LA volume and function of AF patients in clinical practice.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Ecocardiografia Tridimensional/métodos , Função do Átrio Esquerdo , Ecocardiografia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes
7.
Electrophoresis ; 37(14): 1992-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27121853

RESUMO

In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method.


Assuntos
Eletroforese Capilar/métodos , Eletroforese Capilar/instrumentação , Eletroforese em Gel de Poliacrilamida , Agulhas , Proteínas/isolamento & purificação
8.
Acta Biochim Biophys Sin (Shanghai) ; 48(6): 554-62, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27151296

RESUMO

High mobility group box1 (HMGB1), as a damage-associated inflammatory factor, contributes to the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, we explored the role of HMGB1 in CDI (Clostridium difficile infection) by in vivo and in vitro experiments. Our results showed that HMGB1 might play an important role in the acute inflammatory responses to C. difficile toxin A (TcdA), affect early inflammatory factors, and induce inflammation via the HMGB1-TLR4 pathway. Our study provides the essential information for better understanding the molecular mechanisms of CDI and the potential new therapeutic strategies for the treatment of this infection.


Assuntos
Toxinas Bacterianas/toxicidade , Enterocolite Pseudomembranosa/etiologia , Enterotoxinas/toxicidade , Proteína HMGB1/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/patologia , Feminino , Ácido Glicirrízico/farmacologia , Proteína HMGB1/antagonistas & inibidores , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Camundongos , Células RAW 264.7 , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
9.
Biomed Environ Sci ; 29(7): 484-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27554118

RESUMO

OBJECTIVE: To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest. METHODS: Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation. Depletion of p21 was carried out by employing the siRNA technique. Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28, an M-phase marker. Senescence was assessed by senescence- associated-ß-galactosidase (SA-ß-gal) staining combined with Ki67 staining, a cell proliferation marker. RESULTS: Accompanying increased p21, the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays. Furthermore, these irradiated cells were blocked at the G2 phase followed by cellular senescence. Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases, as well as the high expression of histone H3 phosphorylated at Ser28. Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells. However, cells with serious DNA damage failed to undergo cytokinesis, leading to the accumulation of multinucleated cells. CONCLUSION: Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation. Downregulation of p21 by siRNA resulted in G2-arrested cells entering into mitosis with serious DNA damage. This is the first report on elucidating the role of p21 in the bypass of mitosis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Mitose/efeitos da radiação , Radiação Ionizante , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Regulação para Baixo , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Interferência de RNA , RNA Interferente Pequeno , Regulação para Cima
10.
Phytomedicine ; 125: 155290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308918

RESUMO

BACKGROUND: In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE: This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS: The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS: At a concentration of 25 µM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION: This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.


Assuntos
Glucosídeos , Isoflavonas , Neoplasias Pulmonares , Radiossensibilizantes , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fatores de Crescimento do Endotélio Vascular/metabolismo , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
11.
Biomed Environ Sci ; 36(10): 903-916, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37932059

RESUMO

Objective: To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation (IR). Methods: Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237 (MLN) and/or p21 depletion by small interfering RNA (siRNA). Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator (FUCCI) system combined with histone H3 phosphorylation at Ser10 (pS10 H3) detection. Senescence was assessed using senescence-associated-ß-galactosidase (SA-ß-Gal), Ki67, and γH2AX staining. Protein expression levels were determined using western blotting. Results: Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment. The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells, ultimately leading to senescence in G1. During this process, the p53/p21 pathway is hyperactivated. Accompanying p21 accumulation, Aurora A kinase levels declined sharply. MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction. Conclusion: Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation, leading to senescence via mitotic skipping.


Assuntos
Aurora Quinase A , Mitose , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Ciclo Celular , Radiação Ionizante , RNA Interferente Pequeno/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
12.
Cells ; 12(6)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36980278

RESUMO

BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe BAG3 as a quintessential multi-functional protein. It supports autophagy of both misfolded proteins and damaged organelles, inhibits apoptosis, maintains the homeostasis of the mitochondria, and facilitates excitation contraction coupling through the L-type calcium channel and the beta-adrenergic receptor. High levels of BAG3 are associated with insensitivity to chemotherapy in malignant cells whereas both loss of function and gain of function variants are associated with cardiomyopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Animais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Citoplasma/metabolismo , Miocárdio/metabolismo
13.
Antioxid Redox Signal ; 38(10-12): 747-767, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36242096

RESUMO

Aims: Radiation by-radiation effect (RIBE) can induce the genomic instability of bone marrow mesenchymal stem cells (BMSCs) adjacent to lung cancer, and this effect not only exists in the short-term, but also accompanies it in the long-term, but its specific mechanism is not clear. Our goal is to explore the similarities and differences in the mechanism of genomic damage in tumor-associated BMSCs induced by short-term and long-term RIBE, and to provide a theoretical basis for adjuvant drugs for protection against RIBE at different clinical time periods. Results: We found that both short- and long-term RIBE induced genomic instability. We could show a high expression of TGF-ß1, TNF-α, and HIF-1α in tumor-associated BMSCs after short-term RIBE whereas only TNF-α and HIF-1α expression was increased in long-term RIBE. We further confirmed that genomic instability is associated with the activation of the HIF-1α pathway and that this is mediated by TNF-α and TGF-ß1. In addition, we found differences in the mechanisms of genomic instability in the considered RIBE windows of analysis. In short-term RIBE, both TNF-α and TGF-ß1 play a role, whereas only TNF-α plays a decisive role in long-term RIBE. In addition, there were differences in BMSC recruitment and genomic instability of different tissues with a more pronounced expression in tumor and bone marrow than compared to lung. Innovation and Conclusion: We could show dynamic changes in the expression of the cytokines TGF-ß1 and TNF-α during short- and long-term RIBE. The differential expression of the two is the key to causing the genomic damage of tumor-associated BMSCs in the considered windows of analysis. Therefore, these results may serve as a guideline for the administration of radiation protection adjuvant drugs at different clinical stages. Antioxid. Redox Signal. 38, 747-767.


Assuntos
Efeito Espectador , Instabilidade Genômica , Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa , Efeito Espectador/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/efeitos da radiação , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células A549 , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Apoptose/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL
14.
Bioprocess Biosyst Eng ; 35(6): 915-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22228298

RESUMO

Propionic acid is an important chemical that is widely used in the food and chemical industries. To enhance propionic acid production, a fibrous-bed bioreactor (FBB) was constructed and Jerusalem artichoke hydrolysate was used as a low-cost renewable feedstock for immobilized fermentation. Comparison of the kinetics of immobilized-cell fermentation using the FBB with those of fed-batch free-cell fermentation showed that immobilized-cell fermentation gave a much higher propionic acid concentration (68.5 vs. 40.6 g/L), propionic acid yield (0.434 vs. 0.379 g/g) and propionic acid productivity (1.55 vs. 0.190 g/L/h) at pH 6.5. Furthermore, repeated batch fermentation, carried out to evaluate the stability of the FBB system, showed that long-term operation with a high average propionic acid yield of 0.483 g/g, high productivity of 3.69 g/L/h and propionic acid concentration of 26.2 g/L were achieved in all eight repeated batches during fermentation for more than 200 h. It is thus concluded that the FBB culture system can be utilized to realize the economical production of propionic acid from Jerusalem artichoke hydrolysate during long-term operation.


Assuntos
Reatores Biológicos/microbiologia , Cynara scolymus/química , Propionatos/metabolismo , Propionibacterium/crescimento & desenvolvimento , Propionibacterium/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Propionatos/química , Fatores de Tempo
15.
Biomed Environ Sci ; 35(5): 419-436, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35676813

RESUMO

Objective: To investigate the function of primary cilia in regulating the cellular response to temozolomide (TMZ) and ionizing radiation (IR) in glioblastoma (GBM). Methods: GBM cells were treated with TMZ or X-ray/carbon ion. The primary cilia were examined by immunostaining with Arl13b and γ-tubulin, and the cellular resistance ability was measured by cell viability assay or survival fraction assay. Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride, the autophagy was measured by acridine orange staining assay. The DNA damage repair ability was estimated by the kinetic curve of γH2AX foci, and the DNA-dependent protein kinase (DNA-PK) activation was detected by immunostaining assay. Results: Primary cilia were frequently preserved in GBM, and the induction of ciliogenesis decreased cell proliferation. TMZ and IR promoted ciliogenesis in dose- and time-dependent manners, and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR. The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair. The interference of ciliogenesis reduced DNA-PK activation, and the knockdown of DNA-PK led to cilium formation and elongation. Conclusion: Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , DNA/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Radiação Ionizante , Temozolomida/farmacologia , Temozolomida/uso terapêutico
16.
Biomed Environ Sci ; 35(5): 437-447, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35676814

RESUMO

Objective: miR-663a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-ß1. The goal of this study was to explore the role of miR-663a during radiation-induced Epithelium-to-mesenchymal transition (EMT). Methods: TGF-ß1 or IR was used to induce EMT. After miR-663a transfection, cell migration and cell morphological changes were detected and the expression levels of miR-663a, TGF-ß1, and EMT-related factors were quantified. Results: Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-ß1 or radiation were suppressed by miR-663a. Furthermore, both X-ray and carbon ion irradiation resulted in the upregulation of TGF-ß1 and downregulation of miR-663a, while the silencing of TGF-ß1 by miR-663a reversed the EMT process after radiation. Conclusion: Our findings demonstrate an EMT-suppressing effect by miR-663a via TGF-ß1 in radiation-induced EMT.


Assuntos
MicroRNAs , Fator de Crescimento Transformador beta1 , Regulação para Baixo , Transição Epitelial-Mesenquimal , Epitélio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
17.
Immunogenetics ; 63(3): 155-66, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21132285

RESUMO

Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background and to facilitate the experimental use of cynomolgus macaques, the second exon of the MhcMafa-DOB, -DPB1, and -DQB1 genes from 143 cynomolgus macaques were characterized by cloning to sequencing. A total of 16 Mafa-DOB, 16 Mafa-DPB1, and 34 Mafa-DQB1 alleles were identified, which revealed limited, moderate, and marked allelic polymorphism at DOB, DPB1, and DQB1, respectively, in a cohort of cynomolgus macaques of Vietnamese origin. In addition, 16 Mafa-DOB, 5 Mafa-DPB1, and 8 Mafa-DQB1 alleles represented novel sequences that had not been reported in earlier studies. Almost of the sequences detected at the DOB and DQB1 locus in the present study belonged to DOB*01 (100%) and DQB1*06 (62%) lineages, respectively. Interestingly, four, three, and one high-frequency alleles were detected at Mafa-DOB, -DPB1, and -DQB1, respectively, in this monkeys. The alleles with the highest frequency among these monkeys were Mafa-DOB*010102, Mafa-DPB1*13, and Mafa-DQB1*0616, and these were found in 33 (25.6%) of 129 monkeys, 32 (31.37%) of 102 monkeys, and 30 (31%) of 143 monkeys, respectively. The high-frequency alleles may represent high priority targets for additional characterization of immune function. We also carried out evolutionary and population analyses using these sequences to reveal population-specific alleles. This information will not only promote the understanding of MHC diversity and polymorphism in the cynomolgus macaque but will also increase the value of this species as a model for biomedical research.


Assuntos
Genes MHC da Classe II , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Sequência de Aminoácidos , Animais , Frequência do Gene , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência
18.
Cell Cycle ; 19(22): 3195-3207, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33121344

RESUMO

The purpose of this study was to investigate the effects of astragalus polysaccharides (APS) on the proliferation and apoptosis of bone marrow mesenchymal stem cells (BMSCs) induced by X-ray radiation-induced A549 cells bystander effect (RIBE), and to explore their mechanisms. In this study, APS increased the reduced cell proliferation rate induced by RIBE and inhibiting the apoptosis of bystander cells. In terms of mechanism, APS up-regulates the proteins Bcl-2, Bcl-xl, and down-regulates the proteins Bax and Bak, which induces a decrease in mitochondrial membrane potential, which induces the release of Cyt-c and AIF, which leads to caspase-dependent and caspase-independent pathway to cause apoptosis. In addition, we believe that ROS may be the main cause of these protein changes. APS can inhibit the generation of ROS in bystander cells and thus inhibit the activation of the mitochondrial pathway, further preventing cellular damage caused by RIBE.


Assuntos
Apoptose/efeitos dos fármacos , Astragalus propinquus/química , Efeito Espectador/efeitos dos fármacos , Efeito Espectador/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Células A549 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Raios X , Proteína X Associada a bcl-2/metabolismo
19.
Biomed Environ Sci ; 22(3): 188-93, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19725460

RESUMO

OBJECTIVE: To detect cadmium in environmental and food samples by graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma atomic emission spectroscopy (ICPAES). METHODS: An indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) was developed based on a cadmium-specific monoclonal antibody. IC-ELISA for cadmium in environmental and food samples was evaluated. RESULTS: IC-ELISA showed an IC50 of 45.6 microg/L with a detection limit of 1.95 microg/L for cadmium, and showed a mean recovery ranging 97.67%-107.08%. The coefficient of variations for intra- and interassay was 3.41%-6.61% and 4.70%-9.21%, respectively. The correlation coefficient between IC-ELISA and GFAAS was 0.998. CONCLUSION: IC-ELISA can detect and quantify cadmium residue in environmental or food samples.


Assuntos
Cádmio/química , Poluentes Ambientais/química , Imunoensaio/métodos , Animais , Anticorpos Monoclonais , Contaminação de Alimentos/análise , Camundongos , Camundongos Endogâmicos BALB C , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(5): 1218-21, 2009 May.
Artigo em Zh | MEDLINE | ID: mdl-19650457

RESUMO

Characteristic of uranium biosorption in water solution by Rhodotorula glutinis was investigated in the present study and the optimal pH for uranium adsorption was found to be 6-7. At the same time, maximum adsorption capacity of 149.4 mgU/(g dry cell) was identified, and Langmuir adsorption models can be used to simulate the isothermal biosorption process with high correlation coefficient of 0.99. According to Fourier transform infrared spectra, a new peak at wave number of 904 cm(-1), which can be assigned to the stretch vibration of UO2, was detected in the cell which was contacted by the uranium, indicated that uranium was really absorbed by Rhodotorula glutinis. Changes in the uranium-exposed yeast biomass were in the stretching vibrations of amino or hydroxyl groups, which shift from 3309 to 3287 cm(-1), and in the stretching vibrations of C--O band, which shift from 1068 to 1080 cm(-1), and these are all attributed to the important role that they may played in the binding of uranium. Hardly any changes can be found in the characteristic IR adsorbing peaks of protein at wave numbers of 1653, 1540 and 1237 cm(-1) before and after uranium adsorption, making it clear that the major component and the structure of the biomass remained intact. 96% of the absorbed uranium can be easily desorbed by 0.1 mol x L(-1) NaHCO3. Obviously, the application potential of this yeast in the uranium wastewater treatment was very wide and expansive, and more more work should be done to realize its industrial use.


Assuntos
Rhodotorula/metabolismo , Urânio/isolamento & purificação , Urânio/metabolismo , Poluentes Radioativos da Água/isolamento & purificação , Poluentes Radioativos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Concentração de Íons de Hidrogênio , Rhodotorula/citologia , Rhodotorula/efeitos dos fármacos , Temperatura , Urânio/farmacologia , Poluentes Radioativos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA