Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 146(5): 2107-2119, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345573

RESUMO

Synaptic dysfunction is one of the earliest pathological processes that contribute to the development of many neurological disorders, including Alzheimer's disease and frontotemporal lobar degeneration. However, the synaptic function of many disease-causative genes and their contribution to the pathogenesis of the related diseases remain unclear. In this study, we investigated the synaptic role of fused in sarcoma, an RNA-binding protein linked to frontotemporal lobar degeneration and amyotrophic lateral sclerosis, and its potential pathological role in frontotemporal lobar degeneration using pyramidal neuron-specific conditional knockout mice (FuscKO). We found that FUS regulates the expression of many genes associated with synaptic function in a hippocampal subregion-specific manner, concomitant with the frontotemporal lobar degeneration-linked behavioural disinhibition. Electrophysiological study and molecular pathway analyses further reveal that fused in sarcoma differentially regulates synaptic and neuronal properties in the ventral hippocampus and medial prefrontal cortex, respectively. Moreover, fused in sarcoma selectively modulates the ventral hippocampus-prefrontal cortex projection, which is known to mediate the anxiety-like behaviour. Our findings unveil the brain region- and synapse-specific role of fused in sarcoma, whose impairment might lead to the emotional symptoms associated with frontotemporal lobar degeneration.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Sarcoma , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/patologia , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Proteína FUS de Ligação a RNA/genética , Sarcoma/metabolismo , Sarcoma/patologia
2.
Mol Cell Neurosci ; 123: 103771, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36064132

RESUMO

The precise control of proliferation and differentiation of neural progenitors is crucial for the development of the central nervous system. Fused in sarcoma (FUS) is an RNA-binding protein pathogenetically linked to Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) disease, yet the function of FUS on neurodevelopment is remained to be defined. Here we report a pivotal role of FUS in regulating the human cortical brain and spinal cord development via the human iPSCs-derived organoids. We found that depletion of FUS via CRISPR/CAS9 leads to an enhancement of neural proliferation and differentiation in cortical brain-organoids, but intriguingly an impairment of these phenotypes in spinal cord-organoids. In addition, FUS binds to the mRNA of a Trk tyrosine kinase receptor of neurotrophin-3 (Ntrk3) and regulates the expression of the different isoforms of Ntrk3 in a tissue-specific manner. Finally, alleviated Ntrk3 level via shRNA rescued the effects of FUS-knockout on the development of the brain- and spinal cord-organoids, suggesting that Ntrk3 is involved in FUS-regulated organoids developmental changes. Our findings uncovered the role of FUS in the neurodevelopment of the human CNS.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Humanos , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Organoides/metabolismo , Corpos de Inclusão/metabolismo , Degeneração Lobar Frontotemporal/genética , Esclerose Lateral Amiotrófica/metabolismo , Medula Espinal/metabolismo , Encéfalo/metabolismo
3.
Dig Dis Sci ; 67(10): 4719-4731, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35064375

RESUMO

BACKGROUND: The hypothalamus-pituitary-adrenal axis is the most important endocrine system to control irritability response. Functional dyspepsia (FD) is closely related to irritability. This study aimed to preliminarily explore the corticotropin-releasing factor (CRF) mechanism of auricular vagus nerve stimulation (aVNS) for FD model rats. METHODS: Sprague-Dawley adult male rats were randomly divided into normal group, model group, aVNS group, and sham-aVNS group. Except for the normal rats, all other rats were induced into the FD model through tail-clamping stimulation for 3 weeks. Once the rat model was developed successfully, rats in the aVNS group and sham-aVNS group were intervened with aVNS or sham-aVNS for 2 weeks. No intervention was given to rats in the normal and model groups. The effect of aVNS was assessed. The expressions of hippocampal corticotropin-releasing hormone receptor 1 (CRHR1), hypothalamus CRF, adrenocorticotropic hormone (ACTH), and corticosterone in serum were assessed. RESULTS: 1. Compared with normal rats, model-developing rats showed FD-like behavior. 2. Compared with model rats, rats in the aVNS group showed an improved general condition score and gastric motility, and increased horizontal and vertical motion scores. 3. The release of corticosterone, ACTH in serum, and CRF in the hypothalamus all increased in model rats but decreased with aVNS instead of sham-aVNS. 4. The expression of hippocampus CRHR1 was lower in model rats but higher in the aVNS group. CONCLUSION: aVNS ameliorates gastric motility and improves the mental state in the FD-like rat, probably via inhibiting the CRF pathway.


Assuntos
Dispepsia , Estimulação do Nervo Vago , Animais , Masculino , Ratos , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Corticosterona/metabolismo , Corticosterona/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Dispepsia/metabolismo , Dispepsia/terapia , Hipotálamo/metabolismo , Ratos Sprague-Dawley
4.
J Neuroinflammation ; 18(1): 291, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920740

RESUMO

BACKGROUND: Stress-induced neuroinflammation was considered to play a critical role in the pathogenesis of depression. Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively non-invasive alternative treatment for patients suffering from major depressive disorder. The anti-inflammatory signal of vagus nerve is mediated by α7 nicotinic acetylcholine receptor (α7nAchR), and the hippocampus, the region with the most distribution of α7nAchR, regulates emotions. Here, we investigated the role of α7nAchR mediating hippocampal neuroinflammation in taVNS antidepressant effect though homozygous α7nAChR (-/-) gene knockout and α7nAchR antagonist (methyllycaconitine, MLA). METHODS: There were control, model, taVNS, α7nAChR(-/-) + taVNS, hippocampus (Hi) MLA + taVNS and Hi saline + taVNS groups. We used the chronic unpredicted mild stress (CUMS) method to establish depressive model rats for 42 days, excepting control group. After the successful modeling, except the control and model, the rats in the other groups were given taVNS, which was applied through an electroacupuncture apparatus at the auricular concha (2/15 Hz, 2 mA, 30 min/days) for 21 days. Behavioral tests were conducted at baseline, after modeling and after taVNS intervention, including sucrose preference test (SPT), open field test (OFT) and forced swimming test (FST). These tests are widely used to evaluate depression-like behavior in rats. The samples were taken after experiment, the expressions of α7nAchR, NF-κB p65, IL-1ß and the morphology of microglia were detected. RESULTS: Depression-like behavior and hippocampal neuroinflammation in CUMS model rats were manifested by down-regulated expression of α7nAchR, up-regulated expression of NF-κB p65 and IL-1ß, and the morphology of microglia was in amoebic-like activated state. TaVNS could significantly reverse the above-mentioned phenomena, but had rare improvement effect for α7nAChR(-/-) rats and Hi MLA rats. CONCLUSION: The antidepressant effect of taVNS is related to hippocampal α7nAchR/NF-κB signal pathway.


Assuntos
Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Fator de Transcrição RelA/metabolismo , Estimulação do Nervo Vago/métodos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Doença Crônica , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/terapia , Técnicas de Inativação de Genes/métodos , Hipocampo/efeitos dos fármacos , Masculino , Antagonistas Nicotínicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Estresse Psicológico/genética , Estresse Psicológico/terapia , Fator de Transcrição RelA/genética , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética
5.
Planta ; 254(6): 130, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34817644

RESUMO

MAIN CONCLUSION: A Populus euphratica NAC gene regulates (1,3; 1,4)-ß-D-glucan content in oat developing seed and improves the spikelet number and grain number per spike in transgenic oat under salinity conditions Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-ß-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-ß-D-glucan content as well as the expression level of the (1,3;1,4)-ß-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-ß-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.


Assuntos
Tolerância ao Sal , Fatores de Transcrição , Avena/genética , Avena/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Salinidade , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Biochem Biophys Res Commun ; 496(4): 1191-1196, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29402408

RESUMO

mTOR over-activation is associated with the progression of head and neck squamous cell carcinoma (HNSCC). CC-223 is a novel and potent mTOR kinase inhibitor. Its activity against human HNSCC cells is studied here. In established SCC-9 cells and primary human oral cavity carcinoma (OCC) cells, CC-223 treatment at only nM concentrations significantly inhibited survival, proliferation and cell cycle progression. Furthermore, CC-223 provoked apoptosis activation in human HNSCC cells. CC-223 is more efficient in killing HNSCC cells than other known Akt-mTOR inhibitors: RAD001, MK-2206 and AZD-2014. CC-223 was however non-cytotoxic to the primary human oral epithelial cells. Further studies demonstrate that CC-223 almost completely blocked mTOR complex 1 (mTORC1) and mTORC2 activation in SCC-9 cells and primary OCC cells. In vivo, oral administration of CC-223 at well-tolerated doses potently inhibited SCC-9 xenograft tumor growth in severe combined immunodeficient mice. mTORC1 and mTORC2 activation was largely inhibited in CC-223-treated tumor tissues. Overall, targeting the mTOR kinase by CC-223 inhibits human HNSCC cell growth in vitro and in vivo. CC-223 might have a translational value for the treatment of HNSCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Pirazinas/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Resultado do Tratamento
7.
Biochem Biophys Res Commun ; 501(1): 293-299, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29733844

RESUMO

Ultra-violet (UV) radiation (UVR) to human retinas induces oxidative injury to the resident retinal pigment epithelium (RPE) cells. PF-06409577 a novel, potent and direct AMP-activated protein kinase (AMPK) activator. In ARPE-19 cells and primary murine RPE cells, PF-06409577 significantly inhibited UVR-induced viability reduction, cell death and apoptosis. PF-06409577 activated AMPK signaling in RPE cells by increasing AMPKα1-acetyl-CoA carboxylase phosphorylation and AMPK activity. AMPK inhibition, by AMPKα1-shRNA, -CRISPR/Cas9 knockout or -T172A dominant negative mutation, almost abolished PF-06409577-induced RPE cytoprotection against UVR. PF-06409577 enhanced nicotinamide adenine dinucleotide phosphate (NADPH) activity and expression levels of Nrf2-dependent genes in RPE cells. Furthermore, UVR-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage were largely inhibited by the AMPK activator. In summary, PF-06409577 inhibits UVR-induced oxidative stress and RPE cell death by activating AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Indóis/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular , Células Cultivadas , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , RNA Interferente Pequeno/genética , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 506(1): 73-80, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30340831

RESUMO

AMP-activated protein kinase (AMPK) signaling activation can inhibit Ultra-violet (UV) radiation (UVR)-induced retinal pigment epithelium (RPE) cell injuries. LB-100 is a novel inhibitor of protein phosphatase 2A (PP2A), the AMPKα1 phosphatase. Here, our results demonstrated that LB-100 significantly inhibited UVR-induced viability reduction, cell death and apoptosis in established ARPE-19 cells and primary murine RPE cells. LB-100 activated AMPK, nicotinamide adenine dinucleotide phosphate (NADPH) and Nrf2 (NF-E2-related factor 2) signalings, inhibiting UVR-induced oxidative injuries and DNA damage in RPE cells. Conversely, AMPK inhibition, by AMPKα1-shRNA, -CRISPR/Cas9 knockout or -T172A mutation, almost blocked LB-100-induced RPE cytoprotection against UVR. Importantly, CRISPR/Cas9-mediated PP2A knockout mimicked and nullified LB-100-induced anti-UVR activity in RPE cells. Collectively, these results show that PP2A inhibition by LB-100 protects RPE cells from UVR via activation of AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Piperazinas/farmacologia , Proteína Fosfatase 2/genética , Protetores Solares/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Edição de Genes , Regulação da Expressão Gênica , Humanos , Camundongos , NADP/metabolismo , Cultura Primária de Células , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Transdução de Sinais , Raios Ultravioleta/efeitos adversos
9.
Small ; 14(13): e1703736, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29424016

RESUMO

Catalytic nanomaterials can be used extrinsically to combat diseases associated with a surplus of reactive oxygen species (ROS). Rational design of surface morphologies and appropriate doping can substantially improve the catalytic performances. In this work, a class of hollow polyvinyl pyrrolidone-protected PtPdRh nanocubes with enhanced catalytic activities for in vivo free radical scavenging is proposed. Compared with Pt and PtPd counterparts, ternary PtPdRh nanocubes show remarkable catalytic properties of decomposing H2 O2 via enhanced oxygen reduction reactions. Density functional theory calculation indicates that the bond of superoxide anions breaks for the energetically favorable status of oxygen atoms on the surface of PtPdRh. Viability of cells and survival rate of animal models under exposure of high-energy γ radiation are considerably enhanced by 94% and 50% respectively after treatment of PtPdRh nanocubes. The mechanistic investigations on superoxide dismutase (SOD) activity, malondialdehyde amount, and DNA damage repair demonstrate that hollow PtPdRh nanocubes act as catalase, peroxidase, and SOD analogs to efficiently scavenge ROS.


Assuntos
Nanoestruturas/química , Paládio/química , Platina/química , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo
10.
BMC Complement Altern Med ; 18(1): 74, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466978

RESUMO

BACKGROUND: Cumulated evidence reveals that glial cells in the spinal cord play an important role in the development of chronic neuropathic pain and are also complicated in the analgesic effect of EA intervention. But the roles of microgliacytes and astrocytes of spinal cord in the process of EA analgesia remain unknown. METHODS: A total of 120 male Wistar rats were used in the present study. The neuropathic pain model was established by chronic constrictive injury (CCI) of the sciatic nerve. The rats were randomly divided into sham group, CCI group, and sham CCI + EA group, and CCI + EA group. EA was applied to bilateral Zusanli (ST36)-Yanlingquan (GB34). The mechanical (both time and force responses) and thermal pain thresholds (PTs) of the bilateral hind-paws were measured. The number of microgliacytes and activity of astrocytes in the dorsal horns (DHs) of lumbar spinal cord (L4-5) were examined by immunofluorescence staining, and the expression of glial fibrillary acidic protein (GFAP) protein was detected by western blot. RESULTS: Following CCI, both mechanical and thermal PTs of the ipsilateral hind-paw were significantly decreased beginning from the 3rd day after surgery (P < 0.05), and the mechanical PT of the contralateral hind-paw was considerably decreased from the 6th day on after surgery (P < 0.05). CCI also significantly upregulated the number of Iba-1 labeled microgliacytes and the fluorescence intensity of glial fibrillary acidic protein (GFAP) -labeled astrocyte in the superficial laminae of DHs on bilateral sides (P < 0.05). After repeated EA, the mechanical and thermal PTs at bilateral hind-paws were significantly relieved (P < 0.05). The increased of number of microgliacytes was markedly suppressed by 2 days' EA intervention, and the average fluorescence intensity was suppressed by 2 weeks' EA. The expression of GFAP protein were down-regulated by 1 and 2 weeks' EA treatment, respectively (P < 0.05). CONCLUSIONS: Repeated EA can relieve neuropathic pain and mirror-image pain in chronic neuropathic pain rats, which is probably associated with its effect in downregulating glial cell activation of the lumbar spinal cord, the microgliacyte first and astrocyte later.


Assuntos
Eletroacupuntura , Hiperalgesia/terapia , Neuralgia/terapia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Medula Espinal/citologia , Medula Espinal/metabolismo
11.
Nanomedicine ; 13(5): 1597-1605, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28285158

RESUMO

Bi2Se3 nanoparticles (NPs) have attracted wide interests in biological and medical applications. Layer-like Bi2Se3 with high active surface area is promising for free radical scavenging. Here, we extended the medical applications of Bi2Se3 NPs further to in vivo protection against ionizing radiation based on their superior antioxidant activities and electrocatalytic properties. It was found that Bi2Se3 NPs can significantly increase the surviving fraction of mice after exposure of high-energy radiation of gamma ray. Additionally, the Bi2Se3 NPs can help to recover radiation-lowered red blood cell counts, white blood cell counts and platelet levels. Further investigations revealed that Bi2Se3 NPs behaved as functional free radical scavengers and significantly decreased the level of methylenedioxyamphetamine. In vivo toxicity studies showed that Bi2Se3 NPs did not cause significant side effects in panels of blood chemistry, clinical biochemistry and pathology.


Assuntos
Sequestradores de Radicais Livres , Nanopartículas , Radiação Ionizante , Protetores contra Radiação , Animais , Catálise , Raios gama , Camundongos
12.
Planta ; 244(2): 417-27, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27084679

RESUMO

MAIN CONCLUSION: The PeNAC1 promoter is a non-tissue-specific and stress-inducible promoter containing a GA-responsive element and a MYB recognition sequence that are responsible for induced expression patterns. NAC transcription factors play vital roles in complex signaling networks during plant stress responses. Promoters as crucial molecular switches are involved in the transcriptional regulation of gene activities dynamic network controlling a variety of biological processes, such as developmental processes, responses to hormone and abiotic stress. In this study, a 1217-bp flanking fragment of the stress-responsive NAC gene PeNAC1 was isolated from Populus euphratica. In transgenic Arabidopsis, this promoter fragment was found to have a higher activity than the cauliflower mosaic virus 35S promoter and remained active throughout the plant life cycle, particularly in the spiral vessels and cortical cells of vascular tissues of various organs. We identified a gibberellic acid-responsive element, required for response to gibberellic acid and involved in the salt-stress signaling pathway, and a MYB recognition sequence, which has an important role in promoter response to drought stress, in the PeNAC1 promoter. These results suggest that the PeNAC1 promoter is more effective, non-tissue-specific, and inducible. In addition, the presence of a putative NAC protein-binding motif in the PeNAC1 promoter indicates that PeNAC1 is either regulated by other NAC transcription factors or is self-regulated. Our research will help reveal the regulatory mechanism of the upstream region of the PeNAC1 gene and provide a foundation for the use of the PeNAC1 promoter in molecular breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Populus/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Arabidopsis/genética , Giberelinas/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de DNA , Estresse Fisiológico/genética , beta-Galactosidase/análise
14.
Behav Brain Funct ; 12(1): 13, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068709

RESUMO

BACKGROUND: Cumulating evidence has shown a close correlation between electroacupuncture stimulation (EAS) frequency-specific analgesic effect and central opioid peptides. However, the actions of hippocampal acetylcholinergic receptors have not been determined. This study aims to observe the effect of different frequencies of EAS on the expression of hippocampal muscarinic and nicotinic acetylcholinergic receptors (mAChRs, nAChRs) in neuropathic pain rats for revealing their relationship. METHODS: Forty male Wistar rats were randomly and equally divided into sham, CCI model, 2, 2/15 and 100 HzEA groups. The neuropathic pain model was established by ligature of the left sciatic nerve to induce chronic constriction injury (CCI). EAS was applied to bilateral Zusanli (ST36) and Yanglingquan (GB34) for 30 min, once daily for 14 days except weekends. The mechanical pain thresholds (withdrawal latencies, PWLs) of bilateral hindpaws were measured. The expression levels of hippocampal M1 and M2 mAChR, and α4 and ß2 nAChR genes and proteins were detected by quantitative RT-PCR and Western blot, separately. The involvement of mAChR and nAChR in the analgesic effect of EAS was confirmed by intra-hippocampal microinjection of M1mAChR antagonist (Pirenzepine) and α4ß2 nAChR antagonist (dihydro-beta-erythroidine) respectively. RESULTS: Following EAS, the CCI-induced increase of difference values of bilateral PWLs on day 6 and 14 was significantly reduced (P < 0.05), with 2/15 Hz being greater than 100 Hz EAS on day 14 (P < 0.05). After 2 weeks' EAS, the decreased expression levels of M1 mAChR mRNA of both 2 and 2/15 Hz groups and M1 mAChR protein of the three EAS groups, α4 AChR mRNA of the 2/15 Hz group and ß2 nAChR protein of the three EAS groups were considerably increased (P < 0.05), suggesting an involvement of M1 mAChR and ß2 nAChR proteins in EAS-induced pain relief. No significant changes were found in the expression of M2 mAChR mRNA and protein, α4 nAChR protein and ß2 nAChR mRNA after CCI and EAS (P > 0.05). The analgesic effect of EAS was abolished by intra-hippocampal microinjection of M1mAChR and α4ß2 nAChR antagonists respectively. CONCLUSIONS: EAS of ST36-GB34 produces a cumulative analgesic effect in neuropathic pain rats, which is frequency-dependent and probably mediated by hippocampal M1 mAChR and ß2 nAChR proteins.


Assuntos
Eletroacupuntura/métodos , Hipocampo/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Terapia por Estimulação Elétrica/métodos , Expressão Gênica , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores Muscarínicos/genética , Receptores Nicotínicos/genética
15.
Neural Plast ; 2016: 6521026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833763

RESUMO

To study the effects of acupuncture analgesia on the hippocampus, we observed the effects of electroacupuncture (EA) and mitogen-activated protein kinase (MEK) inhibitor on pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal area CA1 of sham or chronic constrictive injury (CCI) rats. The animals were randomly divided into a control, a CCI, and a U0126 (MEK1/2 inhibitor) group. In all experiments, we briefly (10-second duration) stimulated the sciatic nerve electrically and recorded the firing rates of PENs and PINs. The results showed that in both sham and CCI rats brief sciatic nerve stimulation significantly increased the electrical activity of PENs and markedly decreased the electrical activity of PINs. These effects were significantly greater in CCI rats compared to sham rats. EA treatment reduced the effects of the noxious stimulus on PENs and PINs in both sham and CCI rats. The effects of EA treatment could be inhibited by U0126 in sham-operated rats. The results suggest that EA reduces effects of acute sciatic nerve stimulation on PENs and PINs in the CA1 region of the hippocampus of both sham and CCI rats and that the ERK (extracellular regulated kinase) signaling pathway is involved in the modulation of EA analgesia.


Assuntos
Analgesia por Acupuntura , Eletroacupuntura , Neuralgia/terapia , Nervo Isquiático/lesões , Analgesia por Acupuntura/métodos , Animais , Modelos Animais de Doenças , Eletroacupuntura/métodos , Hipocampo/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Ratos Wistar , Nervo Isquiático/fisiopatologia , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia
16.
BMC Complement Altern Med ; 16(1): 517, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27978835

RESUMO

BACKGROUND: Electroacupuncture (EA) intervention can relieve a variety of pain; however, optimal EA protocols have not been clearly determined. In addition, although central mitogen-activated protein kinase kinase (MEK) signaling has been shown to be involved in the antinociceptive effect of acupuncture stimulation, its characteristics at different time-points of EA intervention have not been fully elucidated. Therefore, the present study investigated the relationship between the effects of different numbers of EA intervention sessions and the activation of MEK1 in the hippocampus and hypothalamus in a rat model of neuropathic pain. METHODS: After ligation of the left sciatic nerve, which induces chronic constriction injury (CCI), the acupoints Zusanli (ST36) and Yanglingquan (GB34) were applied. The thermal withdrawal latency of the hind paw was used to evaluate the effect of EA on pain thresholds. Intra-hippocampus microinjection of PD98059, a MEK inhibitor, was performed to validate the involvement of MEK in EA analgesia. The hippocampus and hypothalamus were harvested to examine the phosphorylation levels of MEK (pMEK) by western blotting. RESULTS: In CCI rats, the thermal pain threshold of the affected hind paw decreased significantly relative to the control. Following subsequent daily EA interventions, CCI-induced ipsilateral hyperalgesia was markedly improved from day 4 and the analgesic effect of EA lasted 3 days after cessation of EA. Four sessions of EA markedly suppressed CCI-induced decrease of hippocampal pMEK1 (normalized to the total MEK level). In contrast, successive sessions of EA intervention gradually down-regulated the CCI-induced up-regulation of hypothalamic pMEK1 along with the increase numbers of EA intervention. However, EA did not exert the same analgesic effect after microinjection of PD98059 into the contralateral hippocampus during the first 3 days of EA intervention. CONCLUSIONS: EA intervention can induce time-dependent cumulative analgesia in neuropathic pain rats after 4 successive sessions of daily EA intervention, which is at least in part related to the activation of hippocampal MEK1.


Assuntos
Eletroacupuntura , Hipocampo/enzimologia , MAP Quinase Quinase 1/metabolismo , Neuralgia/enzimologia , Neuralgia/terapia , Analgesia por Acupuntura , Pontos de Acupuntura , Animais , Humanos , MAP Quinase Quinase 1/genética , Masculino , Neuralgia/genética , Ratos , Ratos Wistar
17.
BMC Complement Altern Med ; 14: 316, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25158599

RESUMO

BACKGROUND: Cumulating evidence has revealed the effectiveness of acupuncture therapy in relieving pain via immunoregulation. However, its underlying mechanism remains unknown. The present study was designed to determine the changes of immunogenic responses at different time-points of electroacupuncture (EA) interventions in neuropathic pain rats. METHODS: The neuropathic pain model was established by ligature of the left sciatic nerve to induce chronic constriction injury (CCI). EA was applied at Zusanli (ST36) and Yanglingquan (GB34) for the EA groups. The thermal pain threshold was detected with an algesia-detector. The subgroups of plasma and splenic lymphocytes were determined via fluorescence-activated cell sorting. Specific inflammatory cytokines were assayed using an ELISA-based bead multiplex assay. The activities of splenic natural killer (NK) cells and cytotoxic T lymphocytes were detected by methyl thiazolyl tetrazolium colorimetric method. For confirming the involvement of NK cell in EA-analgesia, anti-asialo-ganglio-N-tetraosylceramide (anti-asialo-GM1) antibody was given to CCI rats before EA. RESULTS: Following CCI, the thermal pain threshold of the affected hind footpad was significantly decreased, and increased from the 3rd day to the 12th day after EA interventions, presenting a time-dependent tendency from the 5th day on. From day 3 to 5 of EA interventions, the percentages and activity of splenic NK cells, concentrations of splenic interleukin-2 (IL-2) and beta-endorphin (ß-EP) were significantly increased. Meanwhile, the concentrations of plasma IL-2, IL-1ß and gamma-interferon (IFN-γ) were significantly decreased and returned to the normal level on day 12 following EA. Plasma transforming growth factor-ß (TGF-ß) levels were considerably upregulated on day 5 and 12 following EA. The CD4+/CD8+ T cell ratio was markedly downregulated compared with the control and CCI groups on day 5 and returned to the normal level on day 12 following EA. After depleting NK cells by anti-asialo-GM1 antibody, the increased thermal pain threshold following EA intervention was obviously reduced. CONCLUSIONS: Repeated EA interventions have a time-dependent cumulative analgesic effect in neuropathic pain rats, which is closely associated with its regulatory effects on NK cells, splenic IL-2, ß-EP, and plasma IL-2, IL-1ß, IFN-γ and TGF-ß levels.


Assuntos
Analgesia por Acupuntura , Eletroacupuntura , Células Matadoras Naturais/imunologia , Neuralgia/terapia , Animais , Humanos , Interferon gama/sangue , Interleucina-1beta/sangue , Interleucina-2/sangue , Masculino , Neuralgia/sangue , Neuralgia/imunologia , Ratos , Ratos Wistar , beta-Endorfina/sangue
18.
Zhen Ci Yan Jiu ; 49(4): 403-408, 2024 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38649209

RESUMO

Under the guidance of traditional Chinese medicine theory, the clinical research of auricular acupoint stimulation in the treatment of migraine has gained a lot, and the curative efficacy is definite, but its mechanism remains unclear. In the present paper, we discussed the efficacy of auricular acupoint stimulation including "transcutaneous auricular vagus nerve stimulation" (taVNS) in the treatment of migraine in recent years. Through bibliometric analysis, we screened out top 10 auricular acupoints (Shenmenï¼»TF4ï¼½, Pizhixiaï¼»AT4ï¼½, Jiaoganï¼»AH6aï¼½, Ganï¼»CO12ï¼½, Yidanï¼»CO11ï¼½, Neifenmiï¼»CO18ï¼½, Shenï¼»CO10ï¼½, Nieï¼»AT2ï¼½, Zhenï¼»AT3ï¼½ and Eï¼»AT1ï¼½) which were the most frequently used for migraine. Majority of these auricular acupoints just distributed in the region innervated by auricular vagus nerve. Thus, we thought that the analgesic effect of needling these auricular acupoints for migraine was produced by triggering the auricular vagus nerve, and concluded that the central mechanism underlying induction of analgesic effect by activating auricular vagus nerve may be achieved by activating the descending pain regulation pathway of the locus coeruleus nucleus and dorsal raphe nucleus. In addition, taVNS-induced 1) regulation of the activities of brain's default network and pain matrix, 2) activation of the cortical descending pain regulation pathway, and 3) inhibition of the neuroinflammatory response may also contribute to its ameliorating effect of migraine. This paper may provide ideas for the future research on the mechanism of auricular acupoint treatment of migraine.


Assuntos
Pontos de Acupuntura , Acupuntura Auricular , Transtornos de Enxaqueca , Estimulação do Nervo Vago , Nervo Vago , Humanos , Transtornos de Enxaqueca/terapia , Transtornos de Enxaqueca/fisiopatologia , Nervo Vago/fisiologia , Animais
19.
Prog Neurobiol ; 222: 102404, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642095

RESUMO

AMPAR-lacking silent synapses are prevailed and essential for synaptic refinement and synaptic plasticity in developing brains. In mature brain, they are sparse but could be induced under several pathological conditions. How they are regulated molecularly is far from clear. miR-34a is a highly conserved and brain-enriched microRNA with age-dependent upregulated expression profile. Its neuronal function in mature brain remains to be revealed. Here by analyzing synaptic properties of the heterozygous miR-34a knock out mice (34a_ht), we have discovered that mature but not juvenile 34a_ht mice have more silent synapses in the hippocampus accompanied with enhanced synaptic NMDAR but not AMPAR function and increased spine density. As a result, 34a_ht mice display enhanced long-term potentiation (LTP) in the Schaffer collateral synapses and better spatial learning and memory. We further found that Creb1 is a direct target of miR-34a, whose upregulation and activation may mediate the silent synapse increment in 34a_ht mice. Hence, we reveal a novel physiological role of miR-34a in mature brains and provide a molecular mechanism underlying silent synapse regulation.


Assuntos
MicroRNAs , Plasticidade Neuronal , Camundongos , Animais , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Hipocampo/metabolismo , Sinapses/metabolismo , MicroRNAs/metabolismo , Camundongos Knockout
20.
Zhen Ci Yan Jiu ; 48(9): 933-8, 2023 Sep 25.
Artigo em Zh | MEDLINE | ID: mdl-37730264

RESUMO

OBJECTIVE: To observe the effect of transcutaneous auricular vagus nerve stimulation (taVNS) on the improvement of depressive-like behavior and the splenic α7 nicotinic acetylcholine receptor (α7nAchR) / Janus kinase 2 (JAK2 / signal transducer and activator of transcription 3 (STAT3) signaling pathway in lipopolysaccharide (LPS)-induced depressive-like behavior rats, so as to investigate the antidepressant mechanism of taVNS. METHODS: SD rats were randomly divided into SD control group, SD model group and SD taVNS group, and α7nAchR knockout rats were also randomly divided into α7 control group, α7 model group and α7 taVNS group, with 6 rats in each group. Rat model of depressive-like behavior was established by intraperitoneal injection of LPS (1 mg/kg). Rats in both SD taVNS and α7 taVNS groups received taVNS intervention once a day (2 Hz/15 Hz, 2 mA, 30 min) from 7 days before LPS injection to 2 days after LPS injection, respectively. The mean speed, activity time and side immobility time in the open field test were recorded after taVNS. The contents of interleukin 10 (IL-10) and chemokine (C-X-C motif) ligand 1 (CXCL1) in serum were detected by electrochemiluminescence multifactorial method. The splenic phosphorylated (p)-JAK2 and p-STAT3 protein expressions were detected by Western blot. RESULTS: Compared with their respective control groups, the mean speed and active time were reduced (P<0.01, P<0.05, P<0.001) and the side immobility time was increased (P<0.001) in the open field test, serum IL-10 and CXCL1 levels were up-regulated (P<0.01, P<0.05, P<0.001), and splenic p-JAK2 protein expressions were down-regulated (P<0.05, P<0.01) in SD and α7nAchR knockout rats, and splenic p-STAT3 protein expression were down-regulated (P<0.05) in SD rats after LPS injection. Following taVNS intervention and in comparison with the model group , the mean speed and active time were increased (P<0.01) and the side immobility time was decreased (P<0.001) in the open field test, serum IL-10 and CXCL1 levels down-regulated (P<0.05), while splenic p-JAK2 and p-STAT3 protein expressions were up-regulated (P<0.01, P<0.001) in the SD taVNS group rather than in the α7 taVNS group. Compared with SD taVNS group, the α7 taVNS group showed increased (P<0.001, P<0.05) side immobility time in the open field test and serum IL-10, decreased splenic p-JAK2 and p-STAT3 protein expressions (P<0.01, P<0.05). CONCLUSION: taVNS may exert anti-inflammatory effects through modulating the splenic α7nAchR/JAK2/STAT3 signaling pathway, thereby ameliorating LPS-induced depressive-like behavior in rats.


Assuntos
Fator de Transcrição STAT3 , Estimulação do Nervo Vago , Animais , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Lipopolissacarídeos/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/genética , Janus Quinase 2/genética , Interleucina-10 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA