Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257693

RESUMO

The digital image method of monitoring structural displacement is receiving more attention today, especially in non-contact structure health monitoring. Some obvious advantages of this method, such as economy and convenience, were shown while it was used to monitor the deformation of the bridge structure during the service period. The image processing technology was used to extract structural deformation feature information from surveillance video images containing structural displacement in order to realize a new non-contact online monitoring method in this paper. The influence of different imaging distances and angles on the conversion coefficient (η) that converts the pixel coordinates to the actual displacement was first studied experimentally. Then, the measuring and tracking of bridge structural displacement based on surveillance video images was investigated by laboratory-scale experiments under idealized conditions. The results showed that the video imaging accuracy can be affected by changes in the relative position of the imaging device and measured structure, which is embodied in the change in η (actual size of individual pixel) on the structured image. The increase in distance between the measured structure and the monitoring equipment will have a significant effect on the change in the η value. The value of η varies linearly with the change in shooting distance. The value of η will be affected by the changes in shooting angle. The millimeter-level online monitoring of the structure displacement can be realized using images based on surveillance video images. The feasibility of measuring and tracking structural displacement based on surveillance video images was confirmed by a laboratory-scale experiment.

2.
Adv Mater ; 35(13): e2208705, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36661129

RESUMO

Although studies of transition metal sulfides (TMS) as anode materials for sodium-ion batteries are extensively reported, the short cycle life is still a thorny problem that impedes their practical application. In this work, a new capacity fading mechanism of the TMS electrodes is demonstrated; that is, the parasitic reaction between electrolyte anions (i.e., ClO4 - ) and metal sulfides yields non-conductive and unstable solid-electrolyte interphase (SEI) and meanwhile, corrosively turns metal sulfides into less-active oxides. This knowledge guides the development of an electrochemical strategy to manipulate the anion decomposition and construct a stable interface that prevents extensive parasitic reactions. It is shown that introducing sodium nitrate to the electrolyte radically changes the Na+ solvation structure by populating nitrate ions in the first solvation sheath, generating a stable and conductive SEI layer containing both Na3 N and NaF. The optimized interface enables an iron sulfide anode to stably cycle for over 2000 cycles with negligible capacity loss, and a similar enhancement in cycle performance is demonstrated on a number of other metal sulfides. This work discloses metal sulfides' cycling failure mechanism from a unique perspective and highlights the critical importance of manipulating the interface chemistry in sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA