Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(38): e2303108, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222117

RESUMO

Flexible solid-state Zn-ion batteries (ZIBs) have garnered considerable attention for next-generation power sources, but the corrosion, dendrite growth, and interfacial problems severely hinder their practical applications. Herein, a high-performance flexible solid-state ZIB with a unique heterostructure electrolyte is facilely fabricated through ultraviolet-assisted printing strategy. The solid polymer/hydrogel heterostructure matrix not only isolates water molecules and optimizes electric field distribution for dendrite-free anode, but also facilitates fast and in-depth Zn2+ transport in the cathode. The in situ ultraviolet-assisted printing creates cross-linked and well-bonded interfaces between the electrodes and the electrolyte, enabling low ionic transfer resistance and high mechanical stability. As a result, the heterostructure electrolyte based ZIB outperforms single-electrolyte based cells. It not only delivers a high capacity of 442.2 mAh g-1 with long cycling life of 900 cycles at 2 A g-1 , but also maintains stable operation under mechanical bending and high-pressure compression in a wide temperature range (-20 °C to 100 °C).

2.
Adv Mater ; 36(2): e2305812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714162

RESUMO

Electronic textiles harmoniously interact with the human body and the surrounding environment, offering tremendous interest in smart wearable electronics. However, their wide application faces challenges due to the lack of stable and stretchable power electrodes/devices with multifunctional design. Herein, an intrinsically stretchable liquid metal-based fibrous anode for a stable Zn-ion battery (ZIB) is reported. Benefiting from the liquid feature and superior deformability of the liquid metal, optimized Zn ion concentration distribution and Zn (002) deposition behavior are observed, which result in dendrite-free performance even under stretching. With a strain of 50%, the ZIB maintains a high capacity of 139.8 mAh cm-3 (corresponding to 83.0% of the initial value) after 300 cycles, outperforming bare Zn fiber-based ZIB. The fibrous ZIB seamlessly integrates with the sensor, Joule heater, and wirelessly charging device, which provides a stable power supply for human signal monitoring and personal thermal management, holding promise for the application of wearable multifunctional electronic textiles.

3.
Adv Mater ; 36(40): e2407886, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180261

RESUMO

Skin-like stretchable electronics emerge as promising human-machine interfaces but are challenged by the paradox between superior electronic property and reliable mechanical deformability. Here, a general strategy is reported for establishing robust large-scale deformable electronics by effectively isolating strains and strengthening interfaces. A copolymer substrate is designed to consist of mosaic stiff and elastic areas with nearly four orders of magnitudes modulus contrast and cross-linked interfaces. Electronic functional devices and stretchable liquid metal (LM) interconnects are conformally attached at the stiff and elastic areas, respectively, through hydrogen bonds. As a result, functional devices are completely isolated from strains, and resistances of LM conductors change by less than one time when the substrate is deformed by up to 550%. By this strategy, solar cells, wireless charging antenna, supercapacitors, and light-emitting diodes are integrated into a self-powered electronic skin that can laminate on the human body and exhibit stable performances during repeated multimode deformations, demonstrating an efficient path for realizing highly deformable energy autonomous soft electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA