Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815582

RESUMO

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Assuntos
Movimento Celular , Fibrose , Rim , Linfócitos , Receptor de Morte Celular Programada 1 , Receptores CXCR6 , Receptores de Interleucina , Transdução de Sinais , Animais , Fibrose/imunologia , Camundongos , Receptores CXCR6/metabolismo , Receptores CXCR6/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/imunologia , Movimento Celular/imunologia , Humanos , Rim/patologia , Rim/imunologia , Rim/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/imunologia , Camundongos Endogâmicos C57BL , Nefropatias/imunologia , Nefropatias/metabolismo , Nefropatias/patologia , Imunidade Inata/imunologia , Camundongos Knockout , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/imunologia , Intestinos/patologia
2.
Nat Chem Biol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720107

RESUMO

Whether stem-cell-like cancer cells avert ferroptosis to mediate therapy resistance remains unclear. In this study, using a soft fibrin gel culture system, we found that tumor-repopulating cells (TRCs) with stem-cell-like cancer cell characteristics resist chemotherapy and radiotherapy by decreasing ferroptosis sensitivity. Mechanistically, through quantitative mass spectrometry and lipidomic analysis, we determined that mitochondria metabolic kinase PCK2 phosphorylates and activates ACSL4 to drive ferroptosis-associated phospholipid remodeling. TRCs downregulate the PCK2 expression to confer themselves on a structural ferroptosis-resistant state. Notably, in addition to confirming the role of PCK2-pACSL4(T679) in multiple preclinical models, we discovered that higher PCK2 and pACSL4(T679) levels are correlated with better response to chemotherapy and radiotherapy as well as lower distant metastasis in nasopharyngeal carcinoma cohorts.

3.
Circ Res ; 135(3): 434-449, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38864216

RESUMO

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.


Assuntos
Cardiomegalia , Camundongos Knockout , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Remodelação Ventricular
4.
Plant J ; 119(2): 705-719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703081

RESUMO

A fundamental question in developmental biology is how to regulate grain size to improve crop yields. Despite this, little is still known about the genetics and molecular mechanisms regulating grain size in crops. Here, we provide evidence that a putative protein kinase-like (OsLCD3) interacts with the S-adenosyl-L-methionine synthetase 1 (OsSAMS1) and determines the size and weight of grains. OsLCD3 mutation (lcd3) significantly increased grain size and weight by promoting cell expansion in spikelet hull, whereas its overexpression caused negative effects, suggesting that grain size was negatively regulated by OsLCD3. Importantly, lcd3 and OsSAMS1 overexpression (SAM1OE) led to large and heavy grains, with increased ethylene and decreased polyamines production. Based on genetic analyses, it appears that OsLCD3 and OsSAMS1 control rice grain size in part by ethylene/polyamine homeostasis. The results of this study provide a genetic and molecular understanding of how the OsLCD3-OsSAMS1 regulatory module regulates grain size, suggesting that ethylene/polyamine homeostasis is an appropriate target for improving grain size and weight.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza , Proteínas de Plantas , Poliaminas , Etilenos/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poliaminas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
5.
FASEB J ; 38(2): e23446, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275125

RESUMO

Endothelial dysfunction is common in patients with chronic kidney disease (CKD) and cardiovascular events, but the mechanism is unclear. In our study, we found elevated levels of RIPK1 in patients with CKD and cardiovascular events through bioinformation analysis. Elevated RIPK1 levels were found in serum samples of CKD patients and were associated with vascular endothelial dysfunction and renal function. We constructed the five of six nephrectomy of CKD mice model, finding that RIPK1 expressions were elevated in abdominal aorta endothelial cells. After RIPK1 inhibition and overexpression, it was found that RIPK1 could regulate the expression of endothelial nitric oxide synthase (eNOS) and cell adhesion molecule 1 (ICAM-1), and activation of inflammatory responses and endoplasmic reticulum (ER) stress. In addition, uremic toxin induced abnormal expression of RIPK1 in vitro. We observed RIPK1-mediating endothelial dysfunction and inflammation responses by ER stress pathways through gain and loss of function. In order to explore the specific mechanism, we conducted co-immunoprecipitation and expression regulation of RIPK1 and IKK, finding that RIPK1 formed complex with IKK and regulated IKK expression. In conclusion, we demonstrated that RIPK1 levels were closely associated with vascular endothelial dysfunction in patients with CKD. With uremic toxins, RIPK1 expression was elevated, which led to the activation of inflammation through the ER stress pathway, resulting in vascular endothelial injury. Besides, activation of RIPK1-IKK-NF-κB axis was a key driver of endothelial dysfunction in CKD. Our study provides a new perspective for the study of cardiovascular events in CKD.


Assuntos
Insuficiência Renal Crônica , Doenças Vasculares , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Insuficiência Renal Crônica/metabolismo , Doenças Vasculares/metabolismo
6.
FASEB J ; 38(2): e23409, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193628

RESUMO

Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Nefropatias Diabéticas , Podócitos , Proteína Amiloide A Sérica , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Nefropatias Diabéticas/genética , Glucose , Inflamação/genética , NF-kappa B , RNA Mensageiro/genética , Transdução de Sinais , Proteína Amiloide A Sérica/genética
7.
Cell Mol Life Sci ; 81(1): 116, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438808

RESUMO

Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1ß negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1ß on synaptic displacement. This study demonstrates that IL-1ß is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.


Assuntos
Aprendizagem , Microglia , Cálcio , Neurônios GABAérgicos , Interleucina-1beta , Sinapses
8.
Am J Physiol Renal Physiol ; 327(1): F184-F197, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779758

RESUMO

Zn2+ levels are reported to be correlated with kidney function. We explored the significance of Zn2+ in sepsis-induced acute kidney injury (SI-AKI) through the regulation of sirtuin 7 (SIRT7) activity. The sepsis rat model was established by cecal ligation and perforation (CLP) and intraperitoneally injected with ZnSO4 or SIRT7 inhibitor 97491 (SIRT7i), with renal tubular injury assessed by hematoxylin and eosin staining. In vitro, human renal tubular epithelial cells (HK-2) were induced with lipopolysaccharide to obtain a renal injury cell model, followed by ZnSO4 or SIRT7i and autophagy inhibitor (3-methyladenine) treatment. Interleukin (IL)-1ß, IL-18, reactive oxygen species (ROS), Parkin acetylation level, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) expression levels were determined. The renal tubule injury, inflammation condition, and pyroptosis-related and autophagy-related protein levels were assessed. The pyroptosis in kidney tissues and autophagosome formation were observed by transmission electron microscopy. Zn2+ alleviated renal injury in CLP rats and inhibited pyroptosis and its related protein levels by inhibiting SIRT7 activity in septic rat renal tissues. In vitro, Zn2+ increased HK-2 cell viability and reduced KIM-1, NGAL, IL-1ß, IL-18, NLRP3 inflammasome, cleaved caspase-1, gasdermin D-N levels, and pyroptotic cell number. Zn2+ increased autophagosome number and LC3BII/LC3BI ratio and decreased TOM20, TIM23, P62, and mitochondrial ROS levels. Zn2+ increased Parkin acetylation by repressing SIRT7 activity. Inhibiting mitophagy partially averted Zn2+-inhibited NLRP3 inflammasome activation and apoptosis in HK-2 cells. Zn2+ upregulated Parkin acetylation by repressing SIRT7 activity to promote mitophagy and inhibit NLRP3 inflammasome activation and pyroptosis, thus improving SI-AKI.NEW & NOTEWORTHY Zn2+ upregulated Parkin acetylation by repressing sirtuin 7 activity to promote mitophagy and inhibit NLRP3 inflammasome activation and pyroptosis, thus improving sepsis-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Ratos Sprague-Dawley , Sepse , Sirtuínas , Ubiquitina-Proteína Ligases , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Sepse/complicações , Sepse/metabolismo , Acetilação , Sirtuínas/metabolismo , Humanos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Zinco/metabolismo , Zinco/farmacologia , Ratos , Modelos Animais de Doenças , Linhagem Celular , Piroptose/efeitos dos fármacos , Regulação para Cima , Autofagia/efeitos dos fármacos , Inflamassomos/metabolismo , Rim/patologia , Rim/metabolismo , Transdução de Sinais
9.
Br J Haematol ; 204(6): 2301-2318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685813

RESUMO

T-cell acute lymphoblastic leukaemia (T-ALL) is a highly aggressive and heterogeneous lymphoid malignancy with poor prognosis in adult patients. Aberrant activation of the NOTCH1 signalling pathway is involved in the pathogenesis of over 60% of T-ALL cases. Ubiquitin-specific protease 28 (USP28) is a deubiquitinase known to regulate the stability of NOTCH1. Here, we report that genetic depletion of USP28 or using CT1113, a potent small molecule targeting USP28, can strongly destabilize NOTCH1 and inhibit the growth of T-ALL cells. Moreover, we show that USP28 also regulates the stability of sterol regulatory element binding protein 1 (SREBP1), which has been reported to mediate increased lipogenesis in tumour cells. As the most critical transcription factor involved in regulating lipogenesis, SREBP1 plays an important role in the metabolism of T-ALL. Therefore, USP28 may be a potential therapeutic target, and CT1113 may be a promising novel drug for T-ALL with or without mutant NOTCH1.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
10.
Anal Chem ; 96(3): 1268-1274, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38193766

RESUMO

RNA-cleaving DNAzymes have emerged as a promising tool for metal ion detection. Achieving spatiotemporal control over their catalytic activity is essential for understanding the role of metal ions in various biological processes. While photochemical and endogenous stimuli-responsive approaches have shown potential for controlled metal ion imaging using DNAzymes, limitations such as photocytotoxicity, poor tissue penetration, or off-target activation have hindered their application for safe and precise detection of metal ions in vivo. We herein report a chemically inducible DNAzyme in which the catalytic core is modified to contain chemical caging groups at the selected backbone sites through systematic screening. This inducible DNAzyme exhibits minimal leakage of catalytic activity and can be reactivated by small molecule selenocysteines, which effectively remove the caging groups and restore the activity of DNAzyme. Benefiting from these findings, we designed a fluorogenic chemically inducible DNAzyme sensor for controlled imaging of metal ions with tunable activity and high selectivity in live cells and in vivo. This chemically inducible DNAzyme design expands the toolbox for controlling DNAzyme activity and can be easily adapted to detect other metal ions in vivo by changing the DNAzyme module, offering opportunities for precise biomedical diagnosis.


Assuntos
DNA Catalítico , DNA Catalítico/química , Metais/química , Íons , RNA/química , Diagnóstico por Imagem
11.
Hum Brain Mapp ; 45(1): e26560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224536

RESUMO

OBJECTIVES: White matter hyperintensities (WMH) increase the risk of stroke and cognitive impairment. This study aims to determine the cross-sectional and longitudinal associations between adiposity and WMH. METHODS: Participants were enrolled from the UK Biobank cohort. Associations of concurrent, past, and changes in overall and central adiposity with WMH were investigated by linear and nonlinear regression models. The association of longitudinal adiposity and WMH volume changes was determined by a linear mixed model. Mediation analysis investigated the potential mediating effect of blood pressure. RESULTS: In 34,653 participants with available adiposity measures and imaging data, the concurrent obese group had a 25.3% (ß [95% CI] = 0.253 [0.222-0.284]) higher WMH volume than the ideal weight group. Increment in all adiposity measures was associated with a higher WMH volume. Among them, waist circumference demonstrated the strongest effect (ß [95% CI] = 0.113 [0.101-0.125]). Past adiposity also demonstrated similar effects. Among the subset of 2664 participants with available WMH follow-up data, adiposity measures were predictive of WMH change. Regarding changes of adiposity, compared with ideal weight stable group, those who turned from ideal weight to overweight/obese had a 8.1% higher WMH volume (ß [95% CI] = 0.081 [0.039-0.123]), while participants who turned from overweight/obese to ideal weight demonstrated no significant WMH volume change. Blood pressure partly meditates the associations between adiposity and WMH. CONCLUSIONS: Both concurrent and past adiposity were associated with a higher WMH volume. The detrimental effects of adiposity on WMH occurred throughout midlife and in the elderly and may still exist after changes in obesity status.


Assuntos
Substância Branca , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Adiposidade , Sobrepeso/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética , Obesidade/diagnóstico por imagem
12.
Biochem Biophys Res Commun ; 719: 150117, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761635

RESUMO

The clinical treatment of human acute myeloid leukemia (AML) is rapidly progressing from chemotherapy to targeted therapies led by the BCL-2 inhibitor venetoclax (VEN). Despite its unprecedented success, VEN still encounters clinical resistance. Thus, uncovering the biological vulnerability of VEN-resistant AML disease and identifying effective therapies to treat them are urgently needed. We have previously demonstrated that iron oxide nanozymes (IONE) are capable of overcoming chemoresistance in AML. The current study reports a new activity of IONE in overcoming VEN resistance. Specifically, we revealed an aberrant redox balance with excessive intracellular reactive oxygen species (ROS) in VEN-resistant monocytic AML. Treatment with IONE potently induced ROS-dependent cell death in monocytic AML in both cell lines and primary AML models. In primary AML with developmental heterogeneity containing primitive and monocytic subpopulations, IONE selectively eradicated the VEN-resistant ROS-high monocytic subpopulation, successfully resolving the challenge of developmental heterogeneity faced by VEN. Overall, our study revealed an aberrant redox balance as a therapeutic target for monocytic AML and identified a candidate IONE that could selectively and potently eradicate VEN-resistant monocytic disease.


Assuntos
Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Resistencia a Medicamentos Antineoplásicos , Espécies Reativas de Oxigênio , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Leucemia Monocítica Aguda/tratamento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Compostos Férricos/farmacologia
13.
BMC Med ; 22(1): 171, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649992

RESUMO

BACKGROUND: Little is known about the safety and efficacy of discontinuing antiplatelet therapy via LMWH bridging therapy in elderly patients with coronary stents implanted for > 12 months undergoing non-cardiac surgery. This randomized trial was designed to compare the clinical benefits and risks of antiplatelet drug discontinuation via LMWH bridging therapy. METHODS: Patients were randomized 1:1 to receive subcutaneous injections of either dalteparin sodium or placebo. The primary efficacy endpoint was cardiac or cerebrovascular events. The primary safety endpoint was major bleeding. RESULTS: Among 2476 randomized patients, the variables (sex, age, body mass index, comorbidities, medications, and procedural characteristics) and percutaneous coronary intervention information were not significantly different between the bridging and non-bridging groups. During the follow-up period, the rate of the combined endpoint in the bridging group was significantly lower than in the non-bridging group (5.79% vs. 8.42%, p = 0.012). The incidence of myocardial injury in the bridging group was significantly lower than in the non-bridging group (3.14% vs. 5.19%, p = 0.011). Deep vein thrombosis occurred more frequently in the non-bridging group (1.21% vs. 0.4%, p = 0.024), and there was a trend toward a higher rate of pulmonary embolism (0.32% vs. 0.08%, p = 0.177). There was no significant difference between the groups in the rates of acute myocardial infarction (0.81% vs. 1.38%), cardiac death (0.24% vs. 0.41%), stroke (0.16% vs. 0.24%), or major bleeding (1.22% vs. 1.45%). Multivariable analysis showed that LMWH bridging, creatinine clearance < 30 mL/min, preoperative hemoglobin < 10 g/dL, and diabetes mellitus were independent predictors of ischemic events. LMWH bridging and a preoperative platelet count of < 70 × 109/L were independent predictors of minor bleeding events. CONCLUSIONS: This study showed the safety and efficacy of perioperative LMWH bridging therapy in elderly patients with coronary stents implanted > 12 months undergoing non-cardiac surgery. An alternative approach might be the use of bridging therapy with half-dose LMWH. TRIAL REGISTRATION: ISRCTN65203415.


Assuntos
Stents , Humanos , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Anticoagulantes/administração & dosagem , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/efeitos adversos , Heparina de Baixo Peso Molecular/administração & dosagem , Heparina de Baixo Peso Molecular/uso terapêutico , Heparina de Baixo Peso Molecular/efeitos adversos , Dalteparina/administração & dosagem , Dalteparina/uso terapêutico , Dalteparina/efeitos adversos , Resultado do Tratamento , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Hemorragia/induzido quimicamente , Placebos/administração & dosagem , Assistência Perioperatória/métodos
14.
Small ; 20(33): e2311339, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38529739

RESUMO

In this work, it is reported that zirconium oxide (ZrO2) doped organosilica nanodots (OSiNDs: ZrO2) with light- and charge-management properties serve as efficient cathode interlayers for high-efficiency inverted organic solar cells (i-OSCs). ZrO2 doping effectively improves the light harvesting of the active layer, the physical contact between the active layer, as well as the electron collection property by habiting charge recombination loss. Consequently, all devices utilizing the OSiNDs: ZrO2 cathode interlayer exhibit enhanced power conversion efficiency (PCE). Specifically, i-OSCs based on PM6:Y6 and PM6:BTP-eC9 achieve remarkable PCEs of 17.16% and 18.43%, respectively. Furthermore, the PCE of device based on PM6:Y6 maintains over 97.2% of its original value following AM 1.5G illumination (including UV light) at 100 mW cm-2 for 600 min.

15.
Mol Carcinog ; 63(7): 1349-1361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38712797

RESUMO

Although aberrant methylation of PAX1 is closely associated with cervical cancer (CC), PAX1 methylation (PAX1m) and its role in CC remain to be elucidated. Here, we clarified the biological function of PAX1 in CC. First, PAX1m in ThinPrep cytologic test samples was measured via quantitative methylation-specific PCR. The results showed that PAX1 promoter methylation levels were significantly increased in CC patients (p < 0.001). We also found that PAX1 promoter methylation levels were positively correlated with tumor purity but negatively correlated with immune-infiltration via public databases. Then, CRISPR-based methylation perturbation tools (dCas9-Tet1) were constructed to further demonstrate that DNA methylation participates in the regulation of PAX1 expression directly. Gain- and loss-of-function experiments were used to show that PAX1 overexpression restrained proliferation, migration and improved cisplatin sensitivity by interfering with the WNT/TIMELESS axis in CC cells. Additionally, Co-immunoprecipitation assays further confirmed the interaction between PAX1 and TCF7L2. Taken together, our results suggested that a tumor suppressor role of PAX1 in CC and that CRISPR-based PAX1 demethylation editing might be a promising therapeutic strategy for CC.


Assuntos
Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Regiões Promotoras Genéticas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Via de Sinalização Wnt/genética
16.
Plant Biotechnol J ; 22(5): 1282-1298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124464

RESUMO

The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.


Assuntos
Hordeum , Oryza , Hordeum/genética , Hordeum/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Genes de Plantas , Melaninas/genética , Melaninas/metabolismo , Melhoramento Vegetal , Sistemas de Transporte de Aminoácidos/genética
17.
Clin Exp Immunol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990891

RESUMO

Growing evidence suggests that systemic immune and inflammatory responses may play a critical role in the formation and development of aneurysms. Exploring the differences between single intracranial aneurysm (SIA) and multiple IAs (MIAs) could provide insights for targeted therapies. However, there is a lack of comprehensive and detailed characterization of changes in circulating immune cells in MIAs. Peripheral blood mononuclear cell (PBMC) samples from patients with SIA (n = 16) or MIAs (n = 6) were analyzed using high-dimensional mass cytometry to evaluate the frequency and phenotype of immune cell subtypes. A total of 25 cell clusters were identified, revealing that the immune signature of MIAs included cluster changes. Compared to patients with SIA, patients with MIAs exhibited immune dysfunction and regulatory imbalance in T-cell clusters. They also had reduced numbers of CD8+ T cells and their subgroups CD8+ Te and CD8+ Tem cells, as well as reduced numbers of the CD4+ T-cell subgroup CD27-CD4+ Tem cells. Furthermore, compared to SIA, MIAs were associated with enhanced T-cell immune activation, with elevated expression levels of CD3, CD25, CD27, CCR7, GP130, and interleukin 10. This study provides insights into the circulating immune cell profiles in patients with MIAs, highlighting the similarities and differences between patients with SIA and those with MIAs. Furthermore, the study suggests that circulating immune dysfunction may contribute to development of MIAs.

18.
Appl Environ Microbiol ; : e0068124, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109875

RESUMO

Parasitism is an important lifestyle in the Trichoderma genus but has not been studied in a genus-wide way toward Pythium and Globisporangium hosts. Our approach screened a genus-wide set of 30 Trichoderma species in dual culture assays with two soil-borne Pythium and three Globisporangium plant-parasitic species and used exo-proteomic analyses, with the aim to correlate Trichoderma antagonism with potential strategies for attacking Pythium and Globisporangium. The Trichoderma spp. showed a wide range of antagonism from strong to weak, but the same Trichoderma strain showed similar levels toward all the Pythium and Globisporangium species. The Trichoderma enzymes from strong (Trichoderma asperellum, Trichoderma atroviride, and Trichoderma virens), moderate (Trichoderma cf. guizhouense and Trichoderma reesei), and weak (Trichoderma parepimyces) antagonists were induced by the autoclaved mycelia of one of the screened Pythium species, Pythium myriotylum. The variable proportions of putative cellulases, proteases, and redox enzymes suggested diverse as well as shared strategies amongst the antagonists. There was a partial positive correlation between antagonism from microscopy and the cellulase activity induced by autoclaved P. myriotylum mycelia in different Trichoderma species. The deletion of the cellulase transcriptional activator XYR1 in T. reesei led to lower antagonism toward Pythium and Globisporangium. The antagonism of Pythium and Globisporangium appears to be a generic property of Trichoderma as most of the Trichoderma species were at least moderately antagonistic. While a role for cellulases in the antagonism was uncovered, cellulases did not appear to make a major contribution to T. reesei antagonism, and other factors are also likely contributing.IMPORTANCETrichoderma is an important genus widely distributed in nature with broad ecological impacts and applications in the biocontrol of plant diseases. The Pythium and Globisporangium genera of fungus-like water molds include many important soil-borne plant pathogens that cause various diseases. Most of the Trichoderma species showed at least a moderate ability to compete with or antagonize the Pythium and Globisporangium hosts, and microscopy showed examples of parasitism (a slow type of killing) and predation (a fast type of killing). Hydrolytic enzymes such as cellulases and proteases produced by Trichoderma likely contribute to the antagonism. A mutant deficient in cellulase activity had reduced antagonism. Interestingly, Pythium and Globisporangium species contain cellulose in their cell walls (unlike true fungi such as Trichoderma), and the cellulolytic ability of Trichoderma appears beneficial for antagonism of water molds.

19.
J Med Virol ; 96(6): e29719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873911

RESUMO

This study aimed to determine the timing patterns of the initial respiratory syncytial virus (RSV) infection and to identify the factors influencing disease severity in infants of varying health status. A retrospective study was conducted at the Affiliated Children's Hospital of Chongqing Medical University from 2012 to 2022. The timing of the first RSV infection was estimated in infants with differing health status using correlation analysis, considering their birth time. Logistic regression was utilized to identify factors influencing severe RSV infection in these infants. RSV detection primarily occurred in the winter and spring. Epidemic season and peak timing of RSV were not significantly affected by health status or the COVID-19 pandemic. A strong positive correlation was observed between the age at RSV infection and the interval from birth to the RSV peak season. Infants born during the RSV epidemic season exhibited a higher likelihood of infection within the first 2 months postbirth. In contrast, those born outside the RSV epidemic season were more susceptible to infection during the subsequent peak. Notably, infants with pre-existing health conditions contracted RSV at an earlier age compared to their healthy counterparts. Among healthy infants, severe RSV infection was associated with sex, age, and timing of infection. For infants with underlying conditions, severe RSV infection was primarily related to age and timing of infection. The initial timing of RSV infection in infants varied depending on their health status. Young age and infection timing during the RSV epidemic season were significant risk factors for severe RSV infection. These findings provide a theoretical basis for optimizing immunization strategies for infants with diverse health conditions.


Assuntos
Infecções por Vírus Respiratório Sincicial , Estações do Ano , Índice de Gravidade de Doença , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Lactente , Masculino , Feminino , Estudos Retrospectivos , Recém-Nascido , Vírus Sincicial Respiratório Humano , Hospitalização/estatística & dados numéricos , Fatores de Risco , COVID-19/epidemiologia , Nível de Saúde , China/epidemiologia , Fatores de Tempo
20.
Opt Express ; 32(4): 4816-4826, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439224

RESUMO

In this paper, a simple sensing method based on a silicon oxide microcavity optomechanical oscillator (OMO) is proposed and demonstrated for the detection of acoustic signals. Firstly, the resonance damping was reduced by improving the optical quality factor (Qo) and increasing the sphere-to-neck ratio. After optimizing the process, a microsphere OMO was fabricated, which has an ultra-high mechanical quality factor (6.8 × 106) and greater sphere-to-neck ratio (∼11:1), based on which ultra-narrow linewidth phonon laser (∼1 Hz) is constructed. Secondly, by changing the refractive index of the coupling interval, the low-frequency acoustic pressure signal is efficiently coupled into the microcavity OMO to construct a high-resolution acoustic sensor. This sensing mechanism can not only measure the acoustic pressure, but also use the sideband signal in the modulation mechanism to measure the frequency of acoustic signals (15 Hz∼16 kHz), the sensitivity is 10.3 kHz/Pa, the minimum detectable pressure is 1.1 mPa, and noise-limited minimum detectable pressure is 28.8 µPa/Hz1/2. It is the highest detection resolution compared with the same type of low-frequency acoustic signal detection currently reported. This OMO-based acoustic sensing detection method opens up a new path for future miniaturized, ultra-high-precision, and cost-effective acoustic sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA