Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.896
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2309825120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190528

RESUMO

The impact of sexual selection on the evolution of birds has been widely acknowledged. Although sexual selection has been hypothesized as a driving force in the occurrences of numerous morphological features across theropod evolution, this hypothesis has yet to be comprehensively tested due to challenges in identifying the sex of fossils and by the limited sample size. Confuciusornis sanctus is arguably the best-known early avialan and is represented by thousands of well-preserved specimens from the Early Cretaceous Jehol lagerstätte, which provides us with a chance to decipher the strength of sexual selection on extinct vertebrates. Herein, we present a morphometric study of C. sanctus based on the largest sample size of this taxon collected up to now. Our results indicate that the characteristic elongated paired rectrices is a sexually dimorphic trait and statistically robust inferences of the sexual dimorphism in size, shape, and allometry that have been established, providing the earliest known sexual dimorphism in avian evolution. Our findings suggest that sexual selection, in conjunction with natural selection, does act upon body size and limb length ratio in early birds, thereby promoting a deeper understanding of the role of sexual selection in large-scale phylogenetic evolution.


Assuntos
Fósseis , Seleção Sexual , Animais , Filogenia , Caracteres Sexuais , Tamanho Corporal
2.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718792

RESUMO

Spermatogenesis depends on the crosstalk of Sertoli cells (SCs) and germ cells. However, the gene regulatory network establishing the communications between SCs and germ cells remains unclear. Here, we report that heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) in SCs is essential for the establishment of crosstalk between SCs and germ cells. Conditional knockout of hnRNPH1 in mouse SCs leads to compromised blood-testis barrier function, delayed meiotic progression, increased germ cell apoptosis, sloughing of germ cells and, eventually, infertility of mice. Mechanistically, we discovered that hnRNPH1 could interact with the splicing regulator PTBP1 in SCs to regulate the pre-mRNA alternative splicing of the target genes functionally related to cell adhesion. Interestingly, we also found hnRNPH1 could cooperate with the androgen receptor, one of the SC-specific transcription factors, to modulate the transcription level of a group of genes associated with the cell-cell junction and EGFR pathway by directly binding to the gene promoters. Collectively, our findings reveal a crucial role for hnRNPH1 in SCs during spermatogenesis and uncover a potential molecular regulatory network involving hnRNPH1 in establishing Sertoli-germ cell crosstalk.


Assuntos
Células de Sertoli , Espermatogênese , Animais , Masculino , Camundongos , Fertilidade/fisiologia , Células Germinativas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismo
3.
PLoS Biol ; 21(9): e3002282, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37676855

RESUMO

Light in the environment greatly impacts a variety of brain functions, including sleep. Clinical evidence suggests that bright light treatment has a beneficial effect on stress-related diseases. Although stress can alter sleep patterns, the effect of bright light treatment on stress-induced sleep alterations and the underlying mechanism are poorly understood. Here, we show that bright light treatment reduces the increase in nonrapid eye movement (NREM) sleep induced by chronic stress through a di-synaptic visual circuit consisting of the thalamic ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), lateral habenula (LHb), and rostromedial tegmental nucleus (RMTg). Specifically, chronic stress causes a marked increase in NREM sleep duration and a complementary decrease in wakefulness time in mice. Specific activation of RMTg-projecting LHb neurons or activation of RMTg neurons receiving direct LHb inputs mimics the effects of chronic stress on sleep patterns, while inhibition of RMTg-projecting LHb neurons or RMTg neurons receiving direct LHb inputs reduces the NREM sleep-promoting effects of chronic stress. Importantly, we demonstrate that bright light treatment reduces the NREM sleep-promoting effects of chronic stress through the vLGN/IGL-LHb-RMTg pathway. Together, our results provide a circuit mechanism underlying the effects of bright light treatment on sleep alterations induced by chronic stress.


Assuntos
Habenula , Sono de Ondas Lentas , Animais , Camundongos , Sono , Núcleo Celular , Corpos Geniculados
4.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454159

RESUMO

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Assuntos
Proteínas do Citoesqueleto , Infertilidade Masculina , Teratozoospermia , Tiazóis , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dineínas/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Sêmen/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatogênese/genética , Espermatozoides/metabolismo , Teratozoospermia/metabolismo , Teratozoospermia/patologia
5.
Nature ; 575(7784): 618-621, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31776491

RESUMO

All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun1-4. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries5,6. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. Here we report radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. We find that the motion of the B star and an accompanying Hα emission line require the presence of a dark companion with a mass of [Formula: see text] solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. Gravitational-wave experiments have detected black holes of similar mass, but the formation of such massive ones in a high-metallicity environment would be extremely challenging within current stellar evolution theories.

6.
Proc Natl Acad Sci U S A ; 119(47): e2205476119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375073

RESUMO

Anatomy of the first flying feathered dinosaurs, modern birds and crocodylians, proposes an ancestral flight system divided between shoulder and chest muscles, before the upstroke muscles migrated beneath the body. This ancestral flight system featured the dorsally positioned deltoids and supracoracoideus controlling the upstroke and the chest-bound pectoralis controlling the downstroke. Preserved soft anatomy is needed to contextualize the origin of the modern flight system, but this has remained elusive. Here we reveal the soft anatomy of the earliest theropod flyers preserved as residual skin chemistry covering the body and delimiting its margins. These data provide preserved soft anatomy that independently validate the ancestral theropod flight system. The heavily constructed shoulder and more weakly constructed chest in the early pygostylian Confuciusornis indicated by a preserved body profile, proposes the first upstroke-enhanced flight stroke. Slender ventral body profiles in the early-diverging birds Archaeopteryx and Anchiornis suggest habitual use of the pectoralis could not maintain the sternum through bone functional adaptations. Increased wing-assisted terrestrial locomotion potentially accelerated sternum loss through higher breathing requirements. Lower expected downstroke requirements in the early thermal soarer Sapeornis could have driven sternum loss through bone functional adaption, possibly encouraged by the higher breathing demands of a Confuciusornis-like upstroke. Both factors are supported by a slender ventral body profile. These data validate the ancestral shoulder/chest flight system and provide insights into novel upstroke-enhanced flight strokes and early sternum loss, filling important gaps in our understanding of the appearance of modern flight.


Assuntos
Dinossauros , Ombro , Animais , Ombro/anatomia & histologia , Dinossauros/anatomia & histologia , Asas de Animais/fisiologia , Aves/fisiologia , Esterno/anatomia & histologia , Voo Animal/fisiologia , Fósseis , Evolução Biológica
7.
Chem Soc Rev ; 53(1): 163-203, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38019124

RESUMO

Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.

8.
J Cell Physiol ; 239(6): e31267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558303

RESUMO

Cervical cancer (CxCa) is the fourth most frequent cancer in women. This study aimed to determine the role and underlying mechanism of fibronectin type III domain-containing protein 5 (FNDC5) in inhibiting CxCa growth. Experiments were performed in human CxCa tissues, human CxCa cell lines (HeLa and SiHa), and xenograft mouse model established by subcutaneous injection of SiHa cells in nude mice. Bioinformatics analysis showed that CxCa patients with high FNDC5 levels have a longer overall survival period. FNDC5 expression was increased in human CxCa tissues, HeLa and SiHa cells. FNDC5 overexpression or FNDC5 protein not only inhibited proliferation, but also restrained invasion and migration of HeLa and SiHa cells. The effects of FNDC5 were prevented by inhibiting integrin with cilengitide, activating PI3K with recilisib or activating Akt with SC79. FNDC5 inhibited the phosphorylation of PI3K and Akt, which was attenuated by recilisib. PI3K inhibitor LY294002 showed similar effects to FNDC5 in HeLa and SiHa cells. Intravenous injection of FNDC5 (20 µg/day) for 14 days inhibited the tumor growth, and reduced the proliferation marker Ki67 expression and the Akt phosphorylation in the CxCa xenograft mouse model. These results indicate that FNDC5 inhibits the malignant phenotype of CxCa cells through restraining PI3K/Akt signaling. Upregulation of FNDC5 may play a beneficial role in retarding the tumor growth of CxCa.


Assuntos
Proliferação de Células , Fibronectinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Integrinas/metabolismo , Progressão da Doença
9.
BMC Genomics ; 25(1): 470, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745141

RESUMO

BACKGROUND: The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequencing (LP-WGS) has been reported for the detection of AOH in a low-pass setting of less than onefold. We developed a method, termed CNVseq-AOH, for predicting the absence of heterozygosity using LP-WGS with ultra-low sequencing data, which overcomes the sparse nature of typical LP-WGS data by combing population-based haplotype information, adjustable sliding windows, and recurrent neural network (RNN). We tested the feasibility of CNVseq-AOH for the detection of AOH in 409 cases (11 AOH regions for model training and 863 AOH regions for validation) from the 1000 Genomes Project (1KGP). AOH detection using CNVseq-AOH was also performed on 6 clinical cases with previously ascertained AOHs by whole exome sequencing (WES). RESULTS: Using SNP-based microarray results as reference (AOHs detected by CNVseq-AOH with at least a 50% overlap with the AOHs detected by chromosomal microarray analysis), 409 samples (863 AOH regions) in the 1KGP were used for concordant analysis. For 784 AOHs on autosomes and 79 AOHs on the X chromosome, CNVseq-AOH can predict AOHs with a concordant rate of 96.23% and 59.49% respectively based on the analysis of 0.1-fold LP-WGS data, which is far lower than the current standard in the field. Using 0.1-fold LP-WGS data, CNVseq-AOH revealed 5 additional AOHs (larger than 10 Mb in size) in the 409 samples. We further analyzed AOHs larger than 10 Mb, which is recommended for reporting the possibility of UPD. For the 291 AOH regions larger than 10 Mb, CNVseq-AOH can predict AOHs with a concordant rate of 99.66% with only 0.1-fold LP-WGS data. In the 6 clinical cases, CNVseq-AOH revealed all 15 known AOH regions. CONCLUSIONS: Here we reported a method for analyzing LP-WGS data to accurately identify regions of AOH, which possesses great potential to improve genetic testing of AOH.


Assuntos
Perda de Heterozigosidade , Redes Neurais de Computação , Sequenciamento Completo do Genoma , Humanos , Sequenciamento Completo do Genoma/métodos , Polimorfismo de Nucleotídeo Único , Genoma Humano
10.
Neuroimage ; 296: 120683, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880308

RESUMO

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.


Assuntos
Epilepsia do Lobo Temporal , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Conectoma/métodos
11.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674260

RESUMO

Mitochondria play a crucial role in spermatogenesis and are regulated by several mitochondrial fusion proteins. However, their functional importance associated with their structure formation and mRNA fate regulation during spermatogenesis remains unclear. Here, we show that mitofusin 2 (MFN2), a mitochondrial fusion protein, interacts with nuage-associated proteins (including MIWI, DDX4, TDRKH and GASZ) in mice. Conditional mutation of Mfn2 in postnatal germ cells results in male sterility due to germ cell developmental defects. Moreover, MFN2 interacts with MFN1, another mitochondrial fusion protein with a high-sequence similarity to MFN2, in testes to facilitate spermatogenesis. Simultaneous mutation of Mfn1 and Mfn2 in testes causes very severe infertile phenotypes. Importantly, we show that MFN2 is enriched in polysome fractions of testes and interacts with MSY2, a germ cell-specific DNA/RNA-binding protein, to control gamete-specific mRNA (such as Spata19) translational activity during spermatogenesis. Collectively, our findings demonstrate that MFN2 interacts with nuage-associated proteins and MSY2 to regulate male germ cell development by controlling several gamete-specific mRNA fates.


Assuntos
Diferenciação Celular/fisiologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células Germinativas/metabolismo , RNA Mensageiro/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Animais , Proteínas Argonautas , RNA Helicases DEAD-box , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células Germinativas/patologia , Células HEK293 , Humanos , Infertilidade Masculina/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Testículo/metabolismo , Testículo/patologia
12.
J Virol ; 97(5): e0165822, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37071015

RESUMO

Japanese encephalitis virus (JEV), with neurotoxic and neuroinvasive properties, is the major cause of human viral encephalitis in Asia. Although Guillain-Barré syndrome caused by JEV infections is not frequent, a few cases have been reported in recent years. To date, no existing animal model for JEV-induced peripheral nerve injury (PNI) has been established, and thus the pathogenic mechanism is not clarified. Therefore, an animal model is urgently required to clarify the correlation between JEV infection and PNI. In the present study, we used JEV GIb strain of NX1889 to establish a mouse model of JEV infection. The general neurological signs emerged on day 3 of modeling. The motor function continued to deteriorate, reaching a maximum at 8 to 13 days postinfection (dpi) and gradually recovered after 16 dpi. The injuries of 105 PFU and 106 PFU groups were the most severe. Transmission electron microscopy and immunofluorescence staining showed varying degrees of demyelination and axonal degeneration in the sciatic nerves. The electrophysiological recordings demonstrated the presence of demyelinating peripheral neuropathy with reduced nerve conduction velocity. The decreased amplitudes and the prolonged end latency revealed axonal-type motor neuropathy. Demyelination is predominant in the early stage, followed by axonal injury. The expression level of JEV-E protein and viral RNA was elevated in the injured sciatic nerves, suggesting that it may cause PNI at the early stage. Inflammatory cell infiltration and increased inflammatory cytokines indicated that neuroinflammation is involved in JEV-induced PNI. IMPORTANCE JEV is a neurotropic flavivirus belonging to the Flaviviridae family and causes high mortality and disability rates. It invades the central nervous system and induces acute inflammatory injury and neuronal death. Thus, JEV infection is a major global public health concern. Previously, motor dysfunction was mainly attributed to central nervous system damage. Our knowledge regarding JEV-induced PNI is vague and neglected. Therefore, a laboratory animal model is essential. Herein, we showed that C57BL/6 mice can be used to study JEV-induced PNI through multiple approaches. We also demonstrated that viral loads might be positively correlated with lesion severity. Therefore, inflammation and direct virus infection may be the putative mechanisms underlying JEV-induced PNI. The results of this study laid the foundation for further elucidation of the pathogenesis mechanisms of PNI caused by JEV.


Assuntos
Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Traumatismos dos Nervos Periféricos , Animais , Humanos , Camundongos , Doenças Desmielinizantes , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Camundongos Endogâmicos C57BL
13.
Blood ; 140(16): 1803-1815, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070233

RESUMO

Platelet transfusion and transplantation of allogeneic stem cells and solid organs are life-saving therapies. Unwanted alloantibodies to nonself human leukocyte antigens (HLAs) on donor cells increase the immunological barrier to these therapies and are important causes of platelet transfusion refractoriness and graft rejection. Although the specificities of anti-HLA antibodies can be determined at the allelic level, traditional treatments for antibody-mediated rejection nonselectively suppress humoral immunity and are not universally successful. We designed HLA-Fc fusion proteins with a bivalent targeting module derived from extracellular domains of HLA and an Fc effector module from mouse IgG2a. We found that HLA-Fc with A2 (A2Fc) and B7 (B7Fc) antigens lowered HLA-A2- and HLA-B7-specific reactivities, respectively, in sera from HLA-sensitized patients. A2Fc and B7Fc bound to B-cell hybridomas bearing surface immunoglobulins with cognate specificities and triggered antigen-specific and Fc-dependent cytotoxicity in vitro. In immunodeficient mice carrying HLA-A2-specific hybridoma cells, A2Fc treatment lowered circulating anti-HLA-A2 levels, abolished the outgrowth of hybridoma cells, and prolonged survival compared with control groups. In an in vivo anti-HLA-A2-mediated platelet transfusion refractoriness model, A2Fc treatment mitigated refractoriness. These results support HLA-Fc being a novel strategy for antigen-specific humoral suppression to improve transfusion and transplantation outcomes. With the long-term goal of targeting HLA-specific memory B cells for desensitization, further studies of HLA-Fc's efficacy in immune-competent animal models are warranted.


Assuntos
Isoanticorpos , Trombocitopenia , Humanos , Camundongos , Animais , Antígeno HLA-B7 , Antígenos HLA , Rejeição de Enxerto , Soro Antilinfocitário , Antígeno HLA-A2 , Células Produtoras de Anticorpos , Imunoglobulina G , Receptores de Antígenos de Linfócitos B
14.
Glob Chang Biol ; 30(1): e17070, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273549

RESUMO

Tidal wetlands sequester vast amounts of organic carbon (OC) and enhance soil accretion. The conservation and restoration of these ecosystems is becoming increasingly geared toward "blue" carbon sequestration while obtaining additional benefits, such as buffering sea-level rise and enhancing biodiversity. However, the assessments of blue carbon sequestration focus primarily on bulk SOC inventories and often neglect OC fractions and their drivers; this limits our understanding of the mechanisms controlling OC storage and opportunities to enhance blue carbon sinks. Here, we determined mineral-associated and particulate organic matter (MAOM and POM, respectively) in 99 surface soils and 40 soil cores collected from Chinese mangrove and saltmarsh habitats across a broad range of climates and accretion rates and showed how previously unrecognized mechanisms of climate and mineral accretion regulated MAOM and POM accumulation in tidal wetlands. MAOM concentrations (8.0 ± 5.7 g C kg-1 ) (±standard deviation) were significantly higher than POM concentrations (4.2 ± 5.7 g C kg-1 ) across the different soil depths and habitats. MAOM contributed over 51.6 ± 24.9% and 78.9 ± 19.0% to OC in mangrove and saltmarsh soils, respectively; both exhibited lower autochthonous contributions but higher contributions from terrestrial or marine sources than POM, which was derived primarily from autochthonous sources. Increased input of plant-derived organic matter along the increased temperature and precipitation gradients significantly enriched the POM concentrations. In contrast, the MAOM concentrations depended on climate, which controlled the mineral reactivity and mineral-OC interactions, and on regional sedimentary processes that could redistribute the reactive minerals. Mineral accretion diluted the POM concentrations and potentially enhanced the MAOM concentrations depending on mineral composition and whether the mineral accretion benefited plant productivity. Therefore, management strategies should comprehensively consider regional climate while regulating sediment supply and mineral abundance with engineering solutions to tap the OC sink potential of tidal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Solo , Minerais , Sequestro de Carbono , Carbono
15.
Eur J Nucl Med Mol Imaging ; 51(5): 1233-1245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095676

RESUMO

PURPOSE: Uncontrolled intra-alveolar inflammation is a central pathogenic feature, and its severity translates into a valid prognostic indicator of acute lung injury (ALI). Unfortunately, current clinical imaging approaches are unsuitable for visualizing and quantifying intra-alveolar inflammation. This study aimed to construct a small-sized vascular cell adhesion molecule-1 (VCAM-1)-targeted magnetic particle imaging (MPI) nanoprobe (ESPVPN) to visualize and accurately quantify intra-alveolar inflammation at the molecular level. METHODS: ESPVPN was engineered by conjugating a peptide (VHPKQHRGGSK(Cy7)GC) onto a polydopamine-functionalized superparamagnetic iron oxide core. The MPI performance, targeting, and biosafety of the ESPVPN were characterized. VCAM-1 expression in HUVECs and mouse models was evaluated by western blot. The degree of inflammation and distribution of VCAM-1 in the lungs were assessed using histopathology. The expression of pro-inflammatory markers and VCAM-1 in lung tissue lysates was measured using ELISA. After intravenous administration of ESPVPN, MPI and CT imaging were used to analyze the distribution of ESPVPN in the lungs of the LPS-induced ALI models. RESULTS: The small-sized (~10 nm) ESPVPN exhibited superior MPI performance compared to commercial MagImaging® and Vivotrax, and ESPVPN had effective targeting and biosafety. VCAM-1 was highly expressed in LPS-induced ALI mice. VCAM-1 expression was positively correlated with the LPS-induced dose (R = 0.9381). The in vivo MPI signal showed positive correlations with both VCAM-1 expression (R = 0.9186) and representative pro-inflammatory markers (MPO, TNF-α, IL-6, IL-8, and IL-1ß, R > 0.7). CONCLUSION: ESPVPN effectively targeted inflammatory lungs and combined the advantages of MPI quantitative imaging to visualize and evaluate the degree of ALI inflammation.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Camundongos , Animais , Molécula 1 de Adesão de Célula Vascular/efeitos adversos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/patologia , Inflamação/induzido quimicamente , Pneumonia/diagnóstico por imagem , Pneumonia/metabolismo , Fenômenos Magnéticos
16.
BMC Cancer ; 24(1): 497, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637730

RESUMO

This study aims to investigate the role and mechanism of tubiquitin-conjugating enzyme E2 C (UBE2C) in acute myeloid leukemia (AML). Initially, UBE2C expression in leukemia was analyzed using the Cancer Genome Atlas database. Further, we silenced UBE2C expression using small-hairpin RNA (sh-RNA). UBE2C expression was detected via the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis. Apoptotic events and reactive oxygen species (ROS) levels were detected by flow cytometry. A xenograft model of leukemia cells were established, and the protein levels of UBE2C, KI-67, and cleaved-caspase 3 were detected by immunohistochemistry. We reported an overexpression of UBE2C in leukemia patients and cell lines (HL60, THP-1, U937, and KG-1 cells). Moreover, a high expression level of UBE2C was correlated with a dismal prognosis in AML patients. UBE2C knockdown inhibited the viability and promoted apoptosis in AML cells by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Furthermore, UBE2C knockdown increased cellular Fe2+ and ROS levels, and enhanced erastin-induced ferroptosis in a proteasome-dependent manner. UBE2C knockdown also suppressed the tumor formation of AML cells in the mouse model. In summary, our findings suggest that UBE2C overexpression promotes the proliferation and inhibits ferroptosis in AML cells by activating the PI3K/AKT pathway.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Leucemia Mieloide Aguda/patologia , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , RNA Interferente Pequeno , Enzimas de Conjugação de Ubiquitina/genética
17.
Anal Biochem ; 684: 115365, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914003

RESUMO

Mec A, as a representative gene mediating resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA), allows a new genetic analysis for the detection of MRSA. Here, a sensitive, prompt, and visual colorimetry is reported to detect the Mec A gene based on toehold-mediated strand displacement (TMSD) and the enrichment effect of graphene oxide (GO). The Mec A triggers to generate the profuse amount of signal units of single-stranded DNA (SG) composed of a long single-stranded base tail and a base head: the tail can be adsorbed and enriched on the surface of GO; the head can form a G quadruplex structure to exert catalytic function towards 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid). Therefore, through the enrichment effect of GO, the signal units SG reflects different degrees of signal amplification on different substrates (such as aqueous solution or filter membrane). This strategy demonstrates a broad linear working range from 100 pM to 1.5 nM (solution) and 1 pM to 1 nM (filter membrane), with a low detection limit of 39.53 pM (solution) and 333 fM (filter membrane). Analytical performance in real samples suggests that this developed colorimetry is endowed with immense potential for clinical detection applications.


Assuntos
Técnicas Biossensoriais , Grafite , Staphylococcus aureus Resistente à Meticilina , Colorimetria , Staphylococcus aureus Resistente à Meticilina/genética , Grafite/química , DNA de Cadeia Simples , Limite de Detecção
18.
Anal Biochem ; 688: 115462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246433

RESUMO

As a kind of human milk oligosaccharide, 6'-sialyllactose (6'-SL) plays an important role in promoting infant brain development and improving infant immunity. The content of 6'-SL in infant formula milk powder is thus one of the important nutritional indexes. Since the lacking of efficient and rapid detection methods for 6'-SL, it is of great significance to develop specific recognition elements and establish fast and sensitive detection methods for 6'-SL. Herein, using 6'-SL specific aptamer as the recognition element, catalytic hairpin assembly as the signal amplification technology and quantum dots as the signal label, a fluorescence biosensor based on fluorescence resonance energy transfer (FRET) was constructed for ultra-sensitive detection of 6'-SL. The detection limit of this FRET-based fluorescent biosensor is 0.3 nM, and it has some outstanding characteristics such as high signal-to-noise ratio, low time-consuming, simplicity and high efficiency in the actual sample detection. Therefore, it has broad application prospect in 6'-SL detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Lactose/análogos & derivados , Pontos Quânticos , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , Leite Humano , Corantes , Técnicas Biossensoriais/métodos , Limite de Detecção
19.
Cell Commun Signal ; 22(1): 6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166927

RESUMO

Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.


Assuntos
Exossomos , Ferroptose , Lesão Pulmonar , Humanos , Morte Celular , NAD
20.
J Org Chem ; 89(9): 6395-6404, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38621116

RESUMO

We developed an electrochemical approach for benzylic C(sp3)-H imidation by virtue of the in situ generated oxygen-centered radicals (OCRs). The electrochemical imidation provides a complementary approach to giving distinct imide products compared with previous acyloxylation products. This protocol exhibits good site selectivity and broad substrate generality. Moreover, the utility of the OCR-mediated protocol was extended to the electrochemical oxidation of silane, and its robustness was also highlighted by the imidation of complex substrates, which would otherwise be inaccessible for previous approaches. A plausible reaction mechanism was proposed to rationalize the experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA