Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Nutr ; 153(6): 1762-1770, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105382

RESUMO

BACKGROUND: Sea cucumber phospholipids, marine-derived lipids with high nutritional functions, have been proven to exhibit various biological activities. However, it is unclear how sea cucumber phospholipids regulate cholesterol (Chol) metabolism in atherosclerosis. OBJECTIVES: This study aimed to investigate the effects and mechanism of sea cucumber phospholipids on the metabolism of Chol and cholesterol esters (CE) in ApoE-/- mice, including plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O). METHODS: Male ApoE-/- mice were fed with Chow diet, high-fat diet (HFD), and HFD supplemented with PC-O or PE-P, respectively. We integrated a targeted lipidomics strategy to classify and compare the cholesteryl esters according to their fatty acid types, and then analyzed the individual cholesteryl ester molecular species in the liver and serum of mice. Furthermore, the Chol metabolism-related genes and pathways were analyzed in high-fat-induced ApoE-/- mice. RESULTS: Biochemical analysis showed that sea cucumber phospholipids significantly inhibit the generation of arterial plaque in ApoE-/- mice. Compared with the HFD group, PE-P significantly reduced the contents of SFA-CE and MUFA-CE in mice liver (P < 0.05), whereas PC-O particularly upregulated CE20:5 and CE22:6 in the serum of mice (P < 0.001). Furthermore, PC-O and PE-P inhibited the Chol synthesis pathway (Cyp7A1 and Cyp27A1), as well as promoted the catabolism of Chol by upregulating gene expressions of bile acid synthesis (Abcb11) and lysosomal activity (Lamp1), respectively. CONCLUSIONS: Sea cucumber phospholipids could ameliorate the atherosclerosis symptoms by regulating Chol metabolism. J Nutr 20xx;x:xx.


Assuntos
Aterosclerose , Pepinos-do-Mar , Camundongos , Masculino , Animais , Fosfolipídeos , Dieta Hiperlipídica/efeitos adversos , Pepinos-do-Mar/metabolismo , Colesterol/metabolismo , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL
2.
J Sci Food Agric ; 103(5): 2378-2388, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36606564

RESUMO

BACKGROUND: Dietary astaxanthin (AST) exhibits the ability to resist lipid accumulation and stimulate hepatic autophagy. Natural AST predominantly exists in stable esterified forms. More importantly, in our previous study, docosahexaenoic acid-acylated AST monoester (AST-DHA) possessed better stability, bioavailability, and neuroprotective ability than AST in free and diester form. However, the AST-DHA mechanisms of action in regulating the obese phenotype and autophagy of the central nervous system remain unclear. RESULTS: High-fat diet (HFD)-fed C57BL/6J mice were orally administered AST-DHA (50 mg/kg body weight/d) for 3 days or 8 weeks. AST-DHA supplementation alleviated HFD-induced abnormal body weight gain, significantly enhanced autophagy with an increased microtubule-associated protein light chain 3 II/I (LC3II/I) ratio, and reduced the accumulation of p62/sequestosome 1 (SQSTM1) in the hypothalamus rather than in the hippocampus. Mechanistically, AST-DHA effectively promoted autophagy and autophagosome formation, and most notably rescued the HFD-impaired autophagosome-lysosome fusion (indicated by the colocalization of LC3 and LAMP1) by regulating mTOR- and AMPK-induced phosphorylation of ULK1. Consequently, AST-DHA enhanced hypothalamic autophagy, leading to pro-opiomelanocortin (POMC) cleavage to produce alpha-melanocyte-stimulating hormone (α-MSH). CONCLUSIONS: This study identified AST-DHA as an enhancer of autophagy that plays a beneficial role in restoring hypothalamic autophagy, and as a new potential therapeutic agent against HFD-induced obesity. © 2023 Society of Chemical Industry.


Assuntos
Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Hipotálamo/metabolismo , Aumento de Peso , Autofagia
3.
Compr Rev Food Sci Food Saf ; 19(5): 2530-2558, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33336980

RESUMO

With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.


Assuntos
Tecnologia de Alimentos/métodos , Lipidômica , Espectrometria de Massas/métodos , Gorduras na Dieta/análise , Análise de Alimentos , Metabolismo dos Lipídeos , Lipídeos/análise
4.
Food Res Int ; 186: 114356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729722

RESUMO

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Assuntos
Crassostrea , Plasmalogênios , Temperatura , Animais , Plasmalogênios/metabolismo , Plasmalogênios/análise , Crassostrea/genética , Crassostrea/metabolismo , Frutos do Mar/análise , Proteômica/métodos , Antioxidantes/metabolismo , Antioxidantes/análise , Fosfatase Alcalina/metabolismo , Qualidade dos Alimentos
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609006

RESUMO

Sea cucumber phospholipids, including the plasmalogen (PlsEtn) and plasmanylcholine (PakCho), have been shown to play a regulatory role in lipid metabolism disorders, but their mechanism of action remains unclear. Therefore, high-fat diet (HFD) and palmitic acid were used to establish lipid accumulation models in mice and HepG2 cells, respectively. Results showed that PlsEtn can reduce lipid deposition both in vivo and in vitro. HFD stimulation abnormally activated lipophagy through the phosphorylation of the AMPK/ULK1 pathway. The lipophagy flux monitor revealed abnormalities in the fusion stage of lipophagy. Of note, only PlsEtn stimulated the dynamic remodeling of the autophagosome membrane, which was indicated by the significantly decreased LC3 II/I ratio and p62 level. In all experiments, the effect of PlsEtn was significantly higher than that of PakCho. These findings elucidated the mechanism of PlsEtn in alleviating lipid accumulation, showed that it might be a lipophagy enhancer, and provided new insights into the high-value utilization of sea cucumber as an agricultural resource.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Plasmalogênios , Pepinos-do-Mar , Animais , Dieta Hiperlipídica/efeitos adversos , Plasmalogênios/metabolismo , Pepinos-do-Mar/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Humanos , Células Hep G2 , Masculino , Camundongos Endogâmicos C57BL , Autofagia/efeitos dos fármacos
6.
Food Funct ; 15(7): 3259-3273, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38469864

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs), arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3) are essential in the development of infants. ARA and DHA from breast milk or infant formula are the main sources of access for infants to meet their physiological and metabolic needs. The ratio of ARA to DHA in breast milk varies among regions and different lactation stages. Different ratios of ARA and DHA mainly from algal oil, animal fat, fish oil, and microbial oil, are added to infant formula in different regions and infant age ranges. Supplementing with appropriate ratios of ARA and DHA during infancy promotes brain, neural, visual, and other development aspects. In this review, we first introduced the current intake status of ARA and DHA in different locations, lactation stages, and age ranges in breast milk and infant formula. Finally, we discussed the effect of different ratios of ARA and DHA on infant development. This review provided a comprehensive research basis for the nutritional research of infants who consume different ratios of ARA and DHA.


Assuntos
Desenvolvimento Infantil , Ácidos Docosa-Hexaenoicos , Lactente , Animais , Feminino , Criança , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Leite Humano/metabolismo , Ácidos Graxos/metabolismo , Fórmulas Infantis , Ingestão de Alimentos
7.
J Agric Food Chem ; 72(29): 16312-16322, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985073

RESUMO

Sea cucumber phospholipids have ameliorative effects on various diseases related to lipid metabolism. However, it is unclear whether it can ameliorate obesity-associated glomerulopathy (ORG) induced by a high-fat diet (HFD). The present study applied UPLC-QqQ-MS/MS and atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry imaging (AP-MALDI MSI) to investigate the effects of sea cucumber phospholipids, including plasmalogen PlsEtn and plasmanylcholine PakCho, on phospholipid profiles in the HFD-induced ORG mouse kidney. Quantitative analysis of 135 phospholipids revealed that PlsEtn and PakCho significantly modulated phospholipid levels. Notably, PlsEtn modulated kidney overall phospholipids better than PakCho. Imaging the "space-content" of 9 phospholipids indicated that HFD significantly increased phospholipid content within the renal cortex. Furthermore, PlsEtn and PakCho significantly decreased the expression of transport-related proteins CD36, while elevating the expression of fatty acid ß-oxidation-related protein PPAR-α in the renal cortex. In conclusion, sea cucumber phospholipids reduced renal lipid accumulation, ameliorated renal damage, effectively regulated the content and distribution of renal phospholipids, and improved phospholipid homeostasis, exerting an anti-OGR effect.


Assuntos
Rim , Camundongos Endogâmicos C57BL , Obesidade , Fosfolipídeos , Pepinos-do-Mar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Animais , Pepinos-do-Mar/química , Pepinos-do-Mar/metabolismo , Camundongos , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Rim/metabolismo , Rim/química , Espectrometria de Massas em Tandem/métodos , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida de Alta Pressão/métodos , Obesidade/metabolismo , Humanos , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Nefropatias/metabolismo
8.
Food Chem ; 445: 138702, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350200

RESUMO

Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids (PUFAs), but is prone to oxidative degradation, resulting in the formation of oxylipins, which compromise AKO quality. Herein, we used reversed-phase-high performance liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) to perform qualitative and semi-quantitative analyses of oxylipins in AKO during storage. A total of 27 oxylipins were identified. A notable decrease in epoxy oxylipins (from 41.8 % to 26.9 % of the total oxylipins) was observed, whereas the content of dihydro oxylipins initially increased and then decreased with 48 h, as a pivotal point for AKO quality decline during storage. We suspected that the ratio of dihydroxyl and epoxy oxylipins could be a novel oxidative index to evaluate the oxidation of AKO. Statistical analysis allowed the identification of five oxylipins which showed unique correlations with various indexes. The findings discussed herein provide important new insights into mechanisms of oxidation occurring in AKO during storage.


Assuntos
Euphausiacea , Animais , Euphausiacea/química , Espectrometria de Massas em Tandem , Oxilipinas , Óleos/química , Oxirredução
9.
J Agric Food Chem ; 72(17): 9842-9855, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630981

RESUMO

The sea cucumber plasmalogen PlsEtn has been shown to be associated with various chronic diseases related to lipid metabolism. However, the mechanism is unclear. Therefore, the present study used the sea cucumber plasmanylcholine PakCho as a structural contrast to PlsEtn and assessed its effect in 8 week high-fat diet (HFD)-fed mice. The lipidomic approach based on high-resolution mass spectrometry combined with molecular biology techniques was used to evaluate the mechanism of PlsEtn. The results showed that both PlsEtn and PakCho significantly inhibited an increase in mouse body weight and liver total triglyceride and total cholesterol levels caused by HFD. In addition, oil red O staining demonstrated that lipid droplets stored in the liver were degraded. Meanwhile, untargeted lipidomic experiments revealed that total lipids (increased by 42.8 mmol/mg prot; p < 0.05), triglycerides (increased by 38.9 mmol/mg prot; p < 0.01), sphingolipids (increased by 1.5 mmol/mg prot; p < 0.0001), and phospholipids (increased by 2.5 mmol/mg prot; p < 0.05) were all significantly elevated under HFD. PlsEtn resolved lipid metabolism disorders by alleviating the abnormal expression of lipid subclasses. In addition, five lipid molecular species, PE (18:1/20:4), PE (18:1/20:3), PE (18:1/18:3), TG (16:0/16:0/17:0), and TG (15:0/16:0/18:1), were identified as the biomarkers of HFD-induced lipid metabolism disorders. Finally, lipophagy-associated protein expression analysis showed that HFD abnormally activated lipophagy via ULK1 phosphorylation and PlsEtn alleviated lipophagy disorder through lysosomal function promotion. In addition, PlsEtn performed better than PakCho. Taken together, the current study results unraveled the mechanism of PlsEtn in alleviating lipid metabolism disorder and offered a new theoretical foundation for the high-value development of sea cucumber.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Plasmalogênios , Pepinos-do-Mar , Triglicerídeos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Pepinos-do-Mar/química , Pepinos-do-Mar/metabolismo , Fígado/metabolismo , Masculino , Plasmalogênios/metabolismo , Triglicerídeos/metabolismo , Humanos , Lipídeos/sangue
10.
J Nutr Biochem ; 126: 109588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266689

RESUMO

Mitochondrial dysfunction is one of the triggers for obesity-induced neuron apoptosis. Thinned young apple is getting more attention on account of the extensive biological activities because of rich polyphenols and polysaccharides. However, the neuroprotective effect of thinned young apple powder (YAP) is still unclear. The aim of the present study was to investigate the preventive effect of YAP on obesity-induced neuronal apoptosis. C57BL/6J male mice were divided into 5 groups, control (CON), high fat diet (HFD), HFD + orlistat (ORL), HFD + low-dose young apple powder (LYAP) and HFD + high-dose young apple powder (HYAP) groups and intervened for 12 weeks. It was found that the YAP effectively reduced body weight gain. Importantly, the levels of pro-apoptosis protein were lower in LYAP and HYAP groups than the HFD group, such as Bak/Bcl2 and cleaved caspase3/caspase3. Pathway analysis based on untargeted metabolomics suggested that YAP alleviated obesity-induced neuronal apoptosis by three main metabolic pathway including arginine metabolism, citrate cycle (TCA cycle) and glutathione metabolism. Meanwhile, YAP improved the protein expression of mitochondrial respiratory chain complex, maintained the homeostasis of TCA cycle intermediates, protected the balance of mitochondrial dynamics and alleviated lipid accumulation. In addition, the levels of several antioxidants in cerebral cortex were higher in HYAP group than the HFD group like superoxide dismutase (SOD) and catalase (CAT). In summary, YAP supplementation suppressed neuronal apoptosis in the cerebral cortex of HFD-induced obesity mice by improving mitochondrial function and inhibiting oxidative stress.


Assuntos
Malus , Camundongos , Masculino , Animais , Pós/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Dieta Hiperlipídica/efeitos adversos , Apoptose , Córtex Cerebral/metabolismo
11.
Foods ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201073

RESUMO

Enteromorpha prolifera (EP) is a green alga that causes green bloom worldwide. This study aimed to isolate and identify n-3 polyunsaturated fatty acids (PUFAs) from EP oil obtained via supercritical fluid extraction (SFE) and to explore its preventive effects against dextran sodium sulfate (DSS)-induced ulcerative colitis in C57BL/6J mice. In EP oil, we found the novel n-3 polyunsaturated fatty acid C16:4n-3 and two unusual fatty acids C18:4n-3 and C16:3n-3, using GC-MS. The administration of EP oil reduced histopathological of symptoms colitis and the shortening of the colon length. Pro-inflammatory cytokines of IL-6 and TNF-α in serum of EP oil treatment were lower than DSS treatment (by 37.63% and 83.52%), and IL-6 gene expression in the colon was lower in than DSS group by 48.28%, and IL-10 in serum was higher than DSS group by 2.88-fold. Furthermore, the protein expression of p-STAT3 by the EP oil treatment was significantly reduced compared with DSS treatment group by 73.61%. Lipidomics study suggested that phosphatidylcholine and phosphatidylethanolamine were positively associated with the anti-inflammatory cytokine IL-10, while cholesteryl ester and sphingomyelin were negatively related to inflammation cytokines in the EP oil group. The present results indicated that EP oil rich in n-3 PUFA contains a novel fatty acid C16:4n-3, as well as two uncommon fatty acids C18:4n-3 and C16:3n-3. EP oil could prevent DSS-induced ulcerative colitis by regulating the JAK/STAT pathway and lipid metabolism.

12.
Food Funct ; 14(23): 10362-10374, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37929718

RESUMO

The present study analyzed the amelioration effect and mechanism of two kinds of astaxanthin (AST), including free-AST (F-AST) and docosahexaenoic acid-acylated AST monoester (AST-DHA), on ganglioside (GLS) metabolism in the cortex of APP/PS1 mice using the LC-MS strategy in combination with molecular biology. Water maze and immunohistochemical experiments demonstrated that AST significantly improved the cognitive level of APP/PS1 mice and reduced Aß deposition in the cortex. After the dietary intake of AST, the composition and level of 84 GLS molecular species in the mouse cortex were determined using the LC-MS strategy. The results showed that the total GLS was reduced, most complex GLS was decreased, and simple GLS (GM3 and GM1a) was increased in the APP/PS1 mouse cortex. Notably, F-AST mainly regulated complex GLS (p < 0.001), whereas AST-DHA primarily reacted with simple GLS (p < 0.001). OAc-GQ1a(38:1), OAc-GQ1a(36:1), GD1a(36:1), and GM3(38:1) decreased 3.73, 2.31, and 2.29-fold and increased 3.54-fold, respectively, and were identified as potential AD biomarkers in the cortices of APP/PS1 mice. Additionally, the AST diet significantly upregulated the mRNA expression of GLS synthesizing genes (st3gal5, st8sia1, b3galt4, st3fal2, and soat) and siae (p < 0.05) and down-regulated that of the GLS catabolizing gene hexa (p < 0.01). In conclusion, improving GLS homeostasis in the AD mouse cortex might be a critical pathway to explain the AD-preventing effect of AST.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Gangliosídeos , Camundongos Transgênicos , Xantofilas/farmacologia , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
13.
J Agric Food Chem ; 71(4): 2183-2196, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669856

RESUMO

Red seaweeds (Rhodophyta) are becoming increasingly important as a food and medicine source in blue biotechnology applications such as functional foods, feeds, and pharmaceuticals. Compared to fatty acid composition and sterols, the lipidome in red seaweeds is still in an early disclosure stage. In this study, the lipidomes of four red seaweeds (Gracilaria sjoestedtii, Gracilaria verrucosa, Gelidium amansii, and Chondrus ocellatus) collected from the coastal area in north China were characterized using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF). Hundreds of lipid molecular species including glycolipids, phospholipids, sphingolipids, glycerolipids, and betaine lipids were identified and quantified. Novel lipids with unique molecular structures such as glucuronosyldiacylglycerols (GlcADG), head-group acylated GlcADG (acGlcADG), and hexose-inositol-phosphoceramides (Hex-IPC) were discovered in red seaweeds for the first time, greatly expanding our knowledge on glycolipids and sphingolipids in seaweeds. Glycolipids were the dominant components (45.6-67.7% of total lipids) with a high proportion of polyunsaturated fatty acids (PUFA) including arachidonic acid (AA) and eicosapentaenoic acid (EPA), indicating the potential nutritional value of the four red seaweeds. The investigated red seaweeds showed a distinctive sphingolipid profile with the t18:1 being the predominant LCB in Cer (41.1-71.5%) and HexCer (91.3-97.9%) except for Gelidium amansii, which had the highest proportion of t18:0. Comparison of lipid profiles among the four red seaweeds revealed that AA- and EPA-glycolipids are good lipid markers for the differentiation of red seaweed samples. The AA proportion in glycolipids of Gracilaria genus was much higher than Gelidium genus and Chondrus genus. This study acquired comprehensive lipid profiles from four red seaweeds, revealing the uniqueness of natural biochemical fingerprints of red seaweeds and further promoting their utilization.


Assuntos
Rodófitas , Alga Marinha , Lipidômica , Alga Marinha/química , Rodófitas/química , Ácidos Graxos , Glicolipídeos , Esfingolipídeos
14.
Artigo em Inglês | MEDLINE | ID: mdl-37268055

RESUMO

High-sugar diet (HSD), high-cholesterol diet (HCD), and high-fat diet (HFD) all modulate the levels of lipids. However, there is a lack of comparative data on the effects of different diets on phospholipids (PLs). Given their important role in physiology and disease, there has been an increasing focus on altered PLs in liver and brain disorders. This study aims to determine the effects of HSD, HCD, and HFD for 14-week feeding on the PL profile of the mouse liver and hippocampus. Quantitative analysis of 116 and 113 PL molecular species in liver and hippocampus tissues revealed that the HSD, HCD, and HFD significantly affected the PLs in liver and hippocampus, especially decreased the levels of plasmenylethanolamine (pPE) and phosphatidylethanolamine (PE). Overall, the impact of HFD on liver PLs was more significant, consistent with the morphological changes in the liver. Compared to HSD and HCD, HFD induced a significant decrease in PC (P-16:0/18:1) and an increase in LPE (18:0) and LPE (18:1) in liver. In the liver of mice fed with different diets, the expression of the key enzymes Gnpat, Agps in the pPE biosynthesis pathway and peroxisome-associated membrane proteins pex14p were decreased. In addition, all diets significantly reduced the expression of Gnpat, pex7p, and pex16p in hippocampus tissue. In conclusion, HSD, HCD, and HFD enhanced lipid accumulation in the liver, led to liver injury, significantly affected the liver and hippocampus PLs, and decreased the expression of genes related to plasmalogen synthesis in mouse liver and hippocampus, which caused severe plasmalogen reduction.


Assuntos
Dieta Hiperlipídica , Hipercolesterolemia , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Açúcares/metabolismo , Açúcares/farmacologia , Plasmalogênios/metabolismo , Fígado/metabolismo , Hipercolesterolemia/metabolismo , Colesterol/metabolismo
15.
J Agric Food Chem ; 71(21): 8230-8240, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196222

RESUMO

Echinoderms are of broad interest for abundant bioactive lipids. The comprehensive lipid profiles in eight echinoderm species were obtained by UPLC-Triple TOF-MS/MS with characterization and semi-quantitative analysis of 961 lipid molecular species in 14 subclasses of 4 classes. Phospholipids (38.78-76.83%) and glycerolipids (6.85-42.82%) were the main classes in all investigated echinoderm species, with abundant ether phospholipids, whereas the proportion of sphingolipids was higher in sea cucumbers. Two sulfated lipid subclasses were detected in echinoderms for the first time; sterol sulfate was rich in sea cucumbers, whereas sulfoquinovosyldiacylglycerol existed in the sea star and sea urchins. Furthermore, PC(18:1/24:2), PE(16:0/14:0), and TAG(50:1e) could be used as lipid markers to distinguish eight echinoderm species. In this study, the differentiation of eight echinoderms was achieved by lipidomics and revealed the uniqueness of the natural biochemical fingerprints of echinoderms. The findings will help evaluate the nutritional value in the future.


Assuntos
Pepinos-do-Mar , Espectrometria de Massas em Tandem , Animais , Equinodermos , Ouriços-do-Mar , Esfingolipídeos/análise
16.
J Nutr Biochem ; 106: 109032, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35500828

RESUMO

As a promising group of natural bioactive lipids, ether-phospholipids (ether-PLs), exhibit the ability to attenuate high-fat diet (HFD)-induced lipid accumulation and atherosclerosis. However, the underlying mechanism is unclear. Autophagy has been implicated in the regulation of obesity. Therefore, we investigated the effects of dietary ether-PLs on hepatic steatosis and the activation of hypothalamic autophagy. HFD-fed C57BL/6J mice were orally administered with ether-PLs (150 mg/kg body weight) including plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O) for three days or eight weeks. Ether-PLs supplementation relieved diet-induced hepatic lipid accumulation and regulated the hypothalamic peroxisome proliferator-activated receptor gamma (PPARγ) and CD36. Notably, PE-P activated hypothalamic autophagy more strongly than PC-O, with an increased ratio of microtubule-associated protein light chain 3 II/I (LC3II/I) and reduced p62/sequestosome-1 (p62) accumulation by rescuing the HFD-impaired autophagy-lysosome fusion. The phosphorylation of ULK1 mediated by Akt-mTOR and AMPK, was involved in ether-PLs activated autophagy. Furthermore, the enhanced hypothalamic autophagy promoted the production of α-melanocyte-stimulating hormone (α-MSH), which has been reported to maintain energy balance. It is concluded that ether-PLs ameliorated HFD-induced hypothalamic autophagy and ameliorated hepatic steatosis. Ether-PLs could thus be an attractive autophagy-enhancers against chronic HFD-induced obesity.


Assuntos
Fígado Gorduroso , Pepinos-do-Mar , Animais , Autofagia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/tratamento farmacológico , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Éteres Fosfolipídicos/farmacologia
17.
Food Funct ; 13(19): 10134-10146, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36106708

RESUMO

Emerging evidence suggests that sea cucumber ether phospholipids (ether-PLs) can modulate high-fat diet (HFD)-induced metabolic disorders. However, whether this modulation is associated with metabolic pathways related to oxidative stress and inflammation remains unclear. This study aimed to investigate the antioxidative and anti-inflammatory effects on HFD-fed mice and the associated metabolism pathways in response to administration with sea cucumber ether-PLs using integrated biochemistry and a metabolomics approach. Biochemistry analysis and histological examinations showed that sea cucumber ether-PLs significantly decreased body weight gain and fat deposition in tissues. PE-P was superior to PC-O in alleviating reactive oxygen species (ROS), malondialdehyde (MDA) and inflammatory responses (IL-6, TNF-α and MCP-1) in the HFD-induced mouse model. Serum metabolomics analysis revealed that it upregulated four metabolites and downregulated twenty-four metabolites compared to those in HFD mice after ether-PL administration. Pathway analysis indicated that sea cucumber ether-PLs alleviate the HFD-induced inflammation and oxidative stress by three main metabolic pathways, namely fatty acid metabolism, branched-chain amino acid (BCAA) metabolism, and trichloroacetic acid (TCA) metabolism. Taken together, sea cucumber ether-PLs showed great potential to become a natural functional food against oxidative stress and inflammation caused by HFD.


Assuntos
Dieta Hiperlipídica , Pepinos-do-Mar , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Malondialdeído , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Éteres Fosfolipídicos/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Espécies Reativas de Oxigênio , Pepinos-do-Mar/metabolismo , Ácido Tricloroacético/farmacologia , Ácido Tricloroacético/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
18.
J Agric Food Chem ; 70(13): 4138-4151, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343232

RESUMO

A comprehensive lipidomic analysis was performed onto three edible brown seaweeds, namely Laminaria japonica, Undaria pinnatifida, and Scagassum natans, using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF-MS/MS). In total, 675 lipid molecules, including glycolipids (GLs), phospholipids, sphingolipids (SLs), betaine lipids, and glycerolipids, were identified and semiquantified. With the exception of the high content of diacylglycerols found in L. japonica (54.6% of total lipids), GLs were the dominant component in the three brown seaweeds (27.7-56.7% of total lipids), containing a high proportion of eicosapentaenoic acid. Interestingly, SLs represented by ceramide and hexosylceramide containing phytosphingosine and α-hydroxy fatty acid structures were detected in the three brown seaweeds. A large number of acylated GLs were identified and reported for the first time in these seaweeds, including acylated monogalactosyldiacylglycerol and acylated digalactosyldiacylglycerol containing nonoxidized fatty acids. The bioactive lipids identified herein could be considered potential biomarkers for identifying these seaweeds, evaluating their nutritional value and further promoting their utilization.


Assuntos
Lipidômica , Alga Marinha , Cromatografia de Fase Reversa , Glicolipídeos/química , Alga Marinha/química , Espectrometria de Massas em Tandem/métodos
19.
Food Chem ; 390: 133194, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576807

RESUMO

Histamine is the prime culprit of toxicity resulting from seafood consumption, whereas conventional detection methods are not convenient to meet the needs of rapid histamine analysis nowadays. Based on upconversion nanoparticles (UCNPs) and inner filter effects (IFE), a novel ratiometric fluorescence nanosystem was developed for the efficient detection of histamine. Through pre-treatment with solid-phase extraction (SPE) and colorific azo coupling reaction of histamine, the fluorescence of UCNPs at 548 nm was quenched, while fluorescence at 664 nm was unchanged. Thus, ratiometric fluorescence I548/I664 was inversely proportional to histamine concentration at a wide range of 10-200 mg/L. The detection limit was 7.34 mg/L, one order of magnitude lower than that of the traditional colorimetric method (25 mg/L). In addition, such a convenient and environment-friendly detection system was further employed to quantify the histamine in fish, shrimp, and shellfish samples, showing excellent application potential in seafood safety.


Assuntos
Histamina , Nanopartículas , Colorimetria , Corantes , Limite de Detecção , Alimentos Marinhos , Espectrometria de Fluorescência/métodos
20.
J Chromatogr A ; 1663: 462764, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34954533

RESUMO

Oxidized cholesteryl ester (OxCE) is produced by the oxidation of cholesteryl ester (CE) in the cores of lipoproteins. OxCE production and oxidative stress have been largely associated with breast cancer. Herein, we developed a novel reverse-phase liquid chromatography coupling quadrupole time-of-flight mass spectrometry (RPLC‒Q-TOF‒MS) method based on the iterative acquisition mode and used the MS/MS mode for deep mining and simultaneous quantification of cholesterol (Chol), CEs and OxCEs in human serum. A mathematical model was used to globally profile 57 molecular species of both CEs and OxCEs in the serum of both healthy volunteers and patients with breast cancer, and the qualitative results were verified based on the retention regularity. An abnormal elevation of OxCEs was found in serum samples of breast cancer patients, where OxCEs were produced by the oxidation of the fatty acyl chain of CE (20:4), such as CE (20:1)+3O, CE (20:2)+2O and CE (20:3)+O, which could be regarded as biomarkers. This comprehensive method for the global profiling of Chol, OxCEs and CEs sheds light on the role OxCEs and CEs play in breast cancer and has enabled the discovery of breast cancer biomarkers.


Assuntos
Neoplasias da Mama , Ésteres do Colesterol , Biomarcadores Tumorais , Cromatografia Líquida , Feminino , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA